Answer:
12 seconds
Step-by-step explanation:
Time taken by 50cm³ of oxygen to diffuse from pinhole
= 1 minute = 60 seconds
⠀
⠀
![\textsf{ Rate of oxygen} \sf (O_2) = (50)/(60)](https://img.qammunity.org/2023/formulas/chemistry/high-school/3hixa0if5xskyo6ma25g08x5s9ziqx0l4f.png)
⠀
⠀
⠀
Let time taken by 50cm³ of hydrogen to diffuse from pinhole = t seconds
⠀
⠀
![\textsf {Rate of hydrogen } \sf(H_2) = (50)/(t)](https://img.qammunity.org/2023/formulas/chemistry/high-school/4jjk59n40zhuyqekmvv8w8kimdlpw6eyk0.png)
⠀
⠀
⠀
According to the formula
![\sf (Rate \: of \: hydrogen(H_2))/(Rate \: of \: oxygen(O_2) ) = \sqrt{ (Molar \: mass \: of \: O_2)/(Molar \: mass \: of \: H_2) }](https://img.qammunity.org/2023/formulas/chemistry/high-school/2i6s4ek1e04jke7yn990jbm31f86ijeo46.png)
⠀
⠀
![\large \sf (50)/(t) / (50)/(60) = \sqrt{ \frac{\cancel{32}\small 16}{\cancel2} } \\ \\ \sf \large \frac{ \cancel{50}}{t} * \frac{60}{ \cancel{50}} = √(16) \\ \\ \sf \large (60)/(t) = 4 \\ \\ \sf \large \frac{ \cancel{60} \: \small12}{ \cancel4} = t \\ \\ \large \underline{ \boxed{ \tt t = 12 \: seconds}}](https://img.qammunity.org/2023/formulas/chemistry/high-school/inv1qxcx232razhnqxo0pa114eyojbohd7.png)
⠀
⠀
⠀
Henceforth, the time taken by 50cm³ of hydrogen to diffuse is 12 seconds.
⠀
⠀
Thank you!