54.9k views
2 votes
Multiply the polynomials show steps

Multiply the polynomials show steps-example-1

1 Answer

4 votes

Answer:

3
a^(4) + 11a³ - 7a² + 18a - 18

Explanation:

When multiplying with two brackets, you need to multiply the three terms, (a²), (4a) and (-6) from the first bracket to all the terms in the second brackets, (3a²), (-a) and (3) individually. I have put each multiplied term in a bracket so it is easier.

(a² + 4a - 6) × (3a² - a + 3) =

( × 3a²) + { × (-a)} + ( × 3) + (4a × 3a²) + {4a × (-a)} + (4a × 3) + {(-6) × ) + {(-6) × (-a)} + {(-6) × 3}

Now we can evaluate the terms in the brackets.

(a² × 3a²) + {a² × (-a)} + (a² × 3) + (4a × 3a²) + {4a × (-a)} + (4a × 3) + {(-6) × a²) + {(-6) × (-a)} + {(-6) × 3} =

3
a^(4) + (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18)

We can open the brackets now. One plus and one minus makes a minus.

3
a^(4) + (-a³) + 3a² + 12a³ + (-4a²) + 12a + (-6a²) + 6a + (-18) =

3
a^(4) -a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18

Evaluate like terms.

3
a^(4) -a³ + 3a² + 12a³ -4a² + 12a -6a² + 6a -18 = 3
a^(4) + 11a³ - 7a² + 18a - 18

User Jalle
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories