207k views
24 votes
Integration by Parts Evaluate e-2x cos(2x) dx.​

Integration by Parts Evaluate e-2x cos(2x) dx.​-example-1
User StuFF Mc
by
8.2k points

1 Answer

3 votes

Let


I = \displaystyle \int e^(-2x) \cos(2x) \, dx[/]tex</p><p>Integrate by parts:</p><p>[tex]\displaystyle \int u \, dv = uv - \int v \, du

with


u = e^(-2x) \implies du = -2 e^(-2x) \, dx \\\\ dv = \cos(2x) \, dx \implies v = \frac12 \sin(2x)

Then


\displaystyle I = \frac12 e^(-2x) \sin(2x) + \int e^(-2x) \sin(2x) \, dx + C

Integrate by parts again, this time with


u = e^(-2x) \implies du = -2 e^(-2x) \, dx \\\\ dv = \sin(2x) \, dx \implies v = -\frac12 \cos(2x)

so that


\displaystyle I = \frac12 e^(-2x) \sin(2x) - \frac12 e^(-2x) \cos(2x) - \int e^(-2x) \cos(2x) \, dx + C\\\\ \implies I = (\sin(2x)-\cos(2x))/(2e^(2x)) - I + C \\\\ \implies 2I = (\sin(2x) - \cos(2x))/(2e^(2x)) + C \\\\ \implies I = \boxed{(\sin(2x) - \cos(2x))/(4e^(2x)) + C}

User Thomas Schwery
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories