Answer:
r = 3.797 cm
h = 7.594 cm
Explanation:
The cylinder volume V = πr² h
So, given that the volume = 344 ml
Then,
344 = πr² h
Make h the subject of the formula:
----- (1)
Similarly, the surface area of a cylinder is expressed by:
A = 2πr² h + 2 πr² ---- (2)
If we replace the value of h from above in (1) to (2)
Then;
![A = 2 \pi r ((344)/(\pi r^2))+2 \pi r^2](https://img.qammunity.org/2021/formulas/mathematics/college/55ngrlzdzzhiawskpfplnc014ur89pmm4i.png)
![A = (688)/(r)+ 2 \pi r^2](https://img.qammunity.org/2021/formulas/mathematics/college/ryvgf07mqcw0w1qv8eue1zkzp4os2ha1be.png)
Taking the differential of A with respect to r, we have:
![(dA )/(dr) =- (688)/(r^2)+ 4 \pi r](https://img.qammunity.org/2021/formulas/mathematics/college/l3k52kejdeerzl9lbzkb8bvbnic77nviqe.png)
Set
for the minimum surface area.
So,
![0 =- (688)/(r^2)+ 4 \pi r](https://img.qammunity.org/2021/formulas/mathematics/college/z2j67wcba6pjyvv7gtg6bo11izucw3j8t1.png)
![(688)/(r^2) =4 \pi r](https://img.qammunity.org/2021/formulas/mathematics/college/tb52jr0cthtb65y494hde3hayc1i40q46e.png)
Divide both sides by 4
![(177)/(r^2) = \pi r](https://img.qammunity.org/2021/formulas/mathematics/college/5losamv6bma0csv480syawhiowymryfyit.png)
![r^3 = (172)/(\pi)](https://img.qammunity.org/2021/formulas/mathematics/college/kb8vx5i1ql7hl27t573ejg6dgpgkomxzs1.png)
![r = \sqrt[3]{(172)/(\pi)}](https://img.qammunity.org/2021/formulas/mathematics/college/xtpgc67imyltki4541tall6a52s8g9ofmr.png)
r = 3.797 cm
From (1), the height is:
![h = (344)/(\pi (3.797)^2)](https://img.qammunity.org/2021/formulas/mathematics/college/aj9709f8yzmwo790h3spgzraznksvndpre.png)
h = 7.594 cm