141k views
5 votes
A roller coaster is traveling at 13 m/s when it approaches a hill that is 400 m long. Heading down the hill, it accelerates at 4.0 m/s^2. Find the final velocity of the roller coaster ?​

User Droidsites
by
6.4k points

1 Answer

1 vote


{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\


\:\:\:\:\bullet\:\:\:\sf{Initial \ velocity \ (u) = 13 \ m/s }


\:\:\:\:\bullet\:\:\:\sf{Distance \ (s) = 400 \ m }


\:\:\:\:\bullet\:\:\:\sf{ Acceleration = 4 \ m/s^2}


\\


{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\


\:\:\:\:\bullet\:\:\:\sf{The \:Final \:velocity \:of \:the\: body }


\\


{\mathfrak{\underline{\purple{\:\:\: Calculation:-\:\:\:}}}} \\ \\

Using 3rd equation of motion


\\


\dashrightarrow\:\: \sf{ {v}^(2) = {u}^(2) +2as }


\\


\dashrightarrow\:\: \sf{ {v}^(2) = {13}^(2) + 2 * 4 * 400 }


\\


\dashrightarrow\:\: \sf{{v}^(2) = 169 + 3200 }


\\


\dashrightarrow\:\: \sf{ {v}^(2) = 3369 }


\\


\dashrightarrow\:\: \sf{ v = √(3369) }


\\


\dashrightarrow\:\: \underline{\boxed{\sf{ v = 58.04 \: m/s }}}


\\


{\mathfrak{\underline{\purple{\:\:\:Additional \:Information:-\:\:\:}}}} \\ \\

Equations Of Motion


\\


\boxed{</p><p></p><p>\begin{minipage}{3 cm}$\\</p><p></p><p>\sf{\:\:\star\:\:v = u +at} \\ \\</p><p></p><p>\sf{\:\:\star\:\:s = ut + (1)/(2)\:at^(2) }\\ \\</p><p></p><p>\sf{\:\:\star\:\:v^(2) = u^(2) + 2as}\\ \\</p><p>\sf{\:\:\star\:\:s = (1)/(2) (u + v)t}\\$</p><p></p><p>\end{minipage}</p><p></p><p>}


\\


\sf{Where,}


\:\:\:\:\bullet\:\:\:\textsf{v = Final velocity}


\:\:\:\:\bullet\:\:\:\textsf{u = Initial velocity}


\:\:\:\:\bullet\:\:\:\textsf{a = Acceleration}


\:\:\:\:\bullet\:\:\:\textsf{s = Distance}


\:\:\:\:\bullet\:\:\:\textsf{t = Time taken}

User Hoodsy
by
4.7k points