Answer:
![x={-(3√(2))/(2), (3)/(4), (3√(2))/(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/8yg9myxefog2s28dxeupz735c486v00nfj.png)
Explanation:
In order to find the zeros of a function, we must first set the equation equal to zero, so we get:
![8x^(3)-6x^(2)-36x+27=0](https://img.qammunity.org/2021/formulas/mathematics/college/o4n8urajk20chjr6596ep8lj7buea71yb1.png)
so we can now solve this by factoring. We can factor this equation by grouping. We start by grouping the equation in pairs of terms, so we get:
![(8x^(3)-6x^(2))+(-36x+27)=0](https://img.qammunity.org/2021/formulas/mathematics/college/m8hn21db0bn56fvpsslrsvn7hodh3cbzrp.png)
and factor each group, so we get:
![2x^(2)(4x-3)-9(4x-3)=0](https://img.qammunity.org/2021/formulas/mathematics/college/nwep6940p5emja7ouann42yulwmv6vy7b6.png)
and now factor again, so we get:
![(2x^(2)-9)(4x-3)=0](https://img.qammunity.org/2021/formulas/mathematics/college/ls5mbubrt915c9pyf4vqpzpzrvmlv1imgy.png)
and now we set each of the factors equal to zero to find the zeros:
![2x^(2)-9=0](https://img.qammunity.org/2021/formulas/mathematics/college/ctr2servib7ilnxzbiei3hlpvx1bic8ltj.png)
![2x^(2)=9](https://img.qammunity.org/2021/formulas/mathematics/college/i83nk5pw9a2zgpk534pb0rhnl6mzpjezxx.png)
we divide both sides into 2 to get:
![x^(2)=(9)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/qamskvu0q7s7opwu0oumhilaex0atsm82b.png)
and take the square root to both sides to get:
![x=\pm\sqrt{(9)/(2)}](https://img.qammunity.org/2021/formulas/mathematics/college/bmj68wiaawmwf51viu66sef0owq3gbsz2k.png)
which yields:
![x=\pm(3)/(√(2))](https://img.qammunity.org/2021/formulas/mathematics/college/ep5ibzry8sfoyif4b8nzjtc1pcmxkn8iec.png)
We rationalize so we get:
![x=\pm(3√(2))/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/ba0nm37wvhmar730jbn25u6oiygz0j3v66.png)
this means that we have two zeros here:
and
![x=-(3√(2))/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/dxo8qsngf5wi8p041bkrfrgxuftnd032lx.png)
so we take the other factor and set it equal to zero.
4x-3=0
and solve for x
4x=3
![x=(3)/(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/cufhm7wo6i79s8kjvbaibcve2a45h7z6j7.png)
and that will be our third zero.