50.8k views
0 votes
Determine the measure of each segment then indicate whether the statements are true or false

Determine the measure of each segment then indicate whether the statements are true-example-1
User Besthiroeu
by
7.7k points

1 Answer

0 votes

Answer:


d_(AB)\\e d_(JK)


d_(AB)\\e \:d_(GH)


d_(GH)\\e \:d_(JK)

Therefore,

Option (A) is false

Option (B) is false

Option (C) is false

Explanation:

Considering the graph

Given the vertices of the segment AB

  • A(-4, 4)
  • B(2, 5)

Finding the length of AB using the formula


d_(AB)\:=\:√(\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2)


=√(\left(2-\left(-4\right)\right)^2+\left(5-4\right)^2)


=√(\left(2+4\right)^2+\left(5-4\right)^2)


=√(6^2+1)


=√(36+1)


=√(37)


d_(AB)\:=√(37)


d_(AB)=6.08 units

Given the vertices of the segment JK

  • J(2, 2)
  • K(7, 2)

From the graph, it is clear that the length of JK = 5 units

so


d_(JK)=5 units

Given the vertices of the segment GH

  • G(-5, -2)
  • H(-2, -2)

Finding the length of GH using the formula


d_(GH)\:=\:√(\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2)


=√(\left(-2-\left(-5\right)\right)^2+\left(-2-\left(-2\right)\right)^2)


=√(\left(5-2\right)^2+\left(2-2\right)^2)


=√(3^2+0)


=√(3^2)


\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0


d_(GH)\:=\:3 units

Thus, from the calculations, it is clear that:


d_(AB)=6.08


d_(JK)=5


d_(GH)\:=\:3

Thus,


d_(AB)\\e d_(JK)


d_(AB)\\e \:d_(GH)


d_(GH)\\e \:d_(JK)

Therefore,

Option (A) is false

Option (B) is false

Option (C) is false

User Jsmtslch
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories