50.8k views
0 votes
Determine the measure of each segment then indicate whether the statements are true or false

Determine the measure of each segment then indicate whether the statements are true-example-1
User Besthiroeu
by
5.7k points

1 Answer

0 votes

Answer:


d_(AB)\\e d_(JK)


d_(AB)\\e \:d_(GH)


d_(GH)\\e \:d_(JK)

Therefore,

Option (A) is false

Option (B) is false

Option (C) is false

Explanation:

Considering the graph

Given the vertices of the segment AB

  • A(-4, 4)
  • B(2, 5)

Finding the length of AB using the formula


d_(AB)\:=\:√(\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2)


=√(\left(2-\left(-4\right)\right)^2+\left(5-4\right)^2)


=√(\left(2+4\right)^2+\left(5-4\right)^2)


=√(6^2+1)


=√(36+1)


=√(37)


d_(AB)\:=√(37)


d_(AB)=6.08 units

Given the vertices of the segment JK

  • J(2, 2)
  • K(7, 2)

From the graph, it is clear that the length of JK = 5 units

so


d_(JK)=5 units

Given the vertices of the segment GH

  • G(-5, -2)
  • H(-2, -2)

Finding the length of GH using the formula


d_(GH)\:=\:√(\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2)


=√(\left(-2-\left(-5\right)\right)^2+\left(-2-\left(-2\right)\right)^2)


=√(\left(5-2\right)^2+\left(2-2\right)^2)


=√(3^2+0)


=√(3^2)


\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0


d_(GH)\:=\:3 units

Thus, from the calculations, it is clear that:


d_(AB)=6.08


d_(JK)=5


d_(GH)\:=\:3

Thus,


d_(AB)\\e d_(JK)


d_(AB)\\e \:d_(GH)


d_(GH)\\e \:d_(JK)

Therefore,

Option (A) is false

Option (B) is false

Option (C) is false

User Jsmtslch
by
5.7k points