Answer:
The gravitational force between the two planets is
![4\cdot 10^(-20) \ N](https://img.qammunity.org/2021/formulas/physics/high-school/rwvcxadbffufvf64xpsi1k3x86uultoqfa.png)
Step-by-step explanation:
Newton’s Law of Universal Gravitation
Objects attract each other with a force that is proportional to their masses and inversely proportional to the square of the distance between them.
![\displaystyle F=G{\frac {m_(1)m_(2)}{r^(2)}}](https://img.qammunity.org/2021/formulas/physics/high-school/imn6kxt5y1o4xgbjj8wgwmrwbe7xhgy7o5.png)
Where:
m1 = mass of object 1
m2 = mass of object 2
r = distance between the objects' center of masses
G = gravitational constant:
![6.67\cdot 10^(-11)~Nw*m^2/Kg^2](https://img.qammunity.org/2021/formulas/physics/high-school/hprqo5tant8kzzk2rocniacvkqq3brjkkz.png)
The mass of the planets are:
![m1 = 3\cdot 10^(12)\ Kg](https://img.qammunity.org/2021/formulas/physics/high-school/55lq1dhoxtyf9tcqqsm0gjnah81uprapb5.png)
![m2 = 2\cdot 10^(10)\ Kg](https://img.qammunity.org/2021/formulas/physics/high-school/uucb0gd76oip2l9kfcc97vit682790utn2.png)
And the distance is:
![r = 10\cdot 10^(15)\ m](https://img.qammunity.org/2021/formulas/physics/high-school/n5zb2u8vs4zvrnk735hcblotfkkmzzqd9l.png)
Applying the formula:
![\displaystyle F=6.67\cdot 10^(-11){\frac {3\cdot 10^(12)*2\cdot 10^(10)}{(10\cdot 10^(15))^(2)}}](https://img.qammunity.org/2021/formulas/physics/high-school/mkb3p96u7y7ru3uzy5noxwocg2qwgvuui5.png)
Calculating:
![\displaystyle F=6.67\cdot 10^(-11){\frac {6\cdot 10^(22)}{1\cdot 10^(32)}](https://img.qammunity.org/2021/formulas/physics/high-school/ta0fmjfc38m6gqc7f6ezksxvrdocn7amct.png)
![F = 4\cdot 10^(-20) \ N](https://img.qammunity.org/2021/formulas/physics/high-school/mg0ifrputh2mo7u6j4tvqngrvlbax9w4mr.png)
The gravitational force between the two planets is
![4\cdot 10^(-20) \ N](https://img.qammunity.org/2021/formulas/physics/high-school/rwvcxadbffufvf64xpsi1k3x86uultoqfa.png)