Solution :
Let x, y, z be the dimensions of the rectangle.
Volume of the rectangle (V) = xyz
Given that the vertex should lie on ellipse
.......(i)
So here the volume xyz must be maximum with constraints above.
We solve this using Lagranches method with variable λ
Lagranches function is
.....(ii)
To find λ,
![$(dF)/(dx)=0; (dF)/(dy)=0;(dF)/(dz)=0$](https://img.qammunity.org/2021/formulas/mathematics/college/w9fzdkg2spxu5faon8o1drewx5wney8d3u.png)
.............(iii)
..................(iv)
...............(v)
Equating (iii) and (iv)
...............(vi)
Equating (iii) and (v)
....................(vii)
Substitute (vi) and (vii) in (i),
From (i),
![$4x^2 + (\sqrt8 x)^2+4x^2 = 4$](https://img.qammunity.org/2021/formulas/mathematics/college/qkk49se5p452wcpo2y7m213e9qxb0c1ooa.png)
![$\Rightarrow 4x^2 +8x^2+4x^2 = 4 \Rightarrow x = (1)/(4)$](https://img.qammunity.org/2021/formulas/mathematics/college/dl44evofem7897zq6i85dzsr7r3cggjnx7.png)
From (vi),
![$y = \sqrt8 x$](https://img.qammunity.org/2021/formulas/mathematics/college/4gkmzvxn90ge4eozcfdgb7q0ob9qkwo575.png)
![$\Rightarrow y =(√(2*4))/(4) \Rightarrow y = (1)/(\sqrt2)$](https://img.qammunity.org/2021/formulas/mathematics/college/tbuj4ujiyhjtj9twpiik1sqmcat2tmh0ve.png)
From (vii),
z = x
![$z =(1)/(4)$](https://img.qammunity.org/2021/formulas/mathematics/college/e7o9bot6v3v3wn2mc7czg9p03fz6f26sow.png)
Therefore, for maximum volume the dimensions of a rectangle box are
![$x =(1)/(4) ; y = (1)/(\sqrt2) ; z =(1)/(4)$](https://img.qammunity.org/2021/formulas/mathematics/college/ogk429uquvuqbfocmfn0gsewcesepfza8p.png)