Answer:
![\mathbf{G(x) = (1 + x)^(29)}](https://img.qammunity.org/2021/formulas/mathematics/college/qp5r5f6fj78wlanlmknaj16n9md31iwxl1.png)
Explanation:
From the given information;
The total number of beads = 10 + 8 + 11 = 29
To choose k beads out 29 beads, let assume that
be the no. such that:
![t_k = ( ^(29)_(k)) \ \ \ where; k =0,1,2,3,....,29](https://img.qammunity.org/2021/formulas/mathematics/college/rgela39puewqgkvy4byyupto9rmhns1jpv.png)
∴
The sequence
![\{ t_k\}^(29)_(k=0) = (^(29)_(k))](https://img.qammunity.org/2021/formulas/mathematics/college/8jeuaqmoewa2sb904g7mtgm28slnvup75x.png)
The generating function for
is:
![G(x) = a_o +a_1x +a_2x^2 +...+a_nx^n](https://img.qammunity.org/2021/formulas/mathematics/college/2osph2ynt38zo8q1vkawxfig4f4nn5o84y.png)
![G(x) = \sum \limits ^(n)_(k=0) \ a_k x^k](https://img.qammunity.org/2021/formulas/mathematics/college/ra68mvzfsgb8c9gaaq6q8n99vexyarljrz.png)
For the sequence above;
![G(x) = \sum \limits ^(29)_(k =0 ) (^(29)_(k)) x^k](https://img.qammunity.org/2021/formulas/mathematics/college/d2o6m655loh909t6qtpu7ge9k8xfiehzub.png)
By applying binomial series
![(1+x)^n = \sum \limits ^n_(k=0) ( ^n_k) x^k](https://img.qammunity.org/2021/formulas/mathematics/college/umaa0sgyfqufpibb8bvtluas4qg20bq383.png)
Thus:
![\mathbf{G(x) = (1 + x)^(29)}](https://img.qammunity.org/2021/formulas/mathematics/college/qp5r5f6fj78wlanlmknaj16n9md31iwxl1.png)