235k views
1 vote
Prove that 1 + sin theta /cos theta + cos theta / 1 + sin theta =
2 sectheta​

1 Answer

3 votes

Given:


(1+\sin \theta)/(\cos \theta)+(\cos \theta)/(1+\sin \theta)=2\sec \theta

To prove:

The given statement.

Proof:

We have,


(1+\sin \theta)/(\cos \theta)+(\cos \theta)/(1+\sin \theta)=2\sec \theta

Taking LHS, we get


\text{LHS}=(1+\sin \theta)/(\cos \theta)+(\cos \theta)/(1+\sin \theta)

Taking LCM, we get


\text{LHS}=((1+\sin \theta)^2+cos^2\theta )/(\cos \theta(1+\sin \theta))


\text{LHS}=((1)^2+2\sin \theta +\sin^2 \theta+cos^2\theta )/(\cos \theta(1+\sin \theta))
[\because (a+b)^2=a^2+2ab+b^2]


\text{LHS}=(1+2\sin \theta +1)/(\cos \theta(1+\sin \theta))
[\because \sin^2 \theta+cos^2\theta =1]


\text{LHS}=(2+2\sin \theta)/(\cos \theta(1+\sin \theta))


\text{LHS}=(2(1+\sin \theta))/(\cos \theta(1+\sin \theta))


\text{LHS}=(2)/(\cos \theta)


\text{LHS}=2\sec \theta
[\because \sec\theta=(1)/(\cos \theta)]


\text{LHS}=\text{RHS}

Hence proved.

User Arseniy Zhizhelev
by
7.3k points