Answer:
See Explanation.
General Formulas and Concepts:
Pre-Algebra
- Distributive Property
- Equality Properties
Algebra I
Algebra II
Pre-Calculus
- Pythagorean Identities: tan²(x) = sec²(x) - 1
Calculus
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration Rule 1:

Integration Rule 2:

Integration 1:

Integration by Parts:

- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Explanation:
Step 1: Define

Step 2: Rewrite
- [Integral - Alg] Separate Exponents:

Step 3: Identify Variables
Using LIPET, we define variables to use IBP.
Use Integration 1.
![u = [sec(u)]^(n-2) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sec^2(u)du\\du = (n-2)[sec(u)]^(n-3) sec(u)tan(u) \ \ \ \ \ \ \ \ v = tan(u)](https://img.qammunity.org/2021/formulas/mathematics/high-school/efl7ttxtws8brpa9bus2ice1gg4zapwjpg.png)
Step 4: Integrate
- Integrate [IBP]:
![\int {sec^n(u)} \, du = tan(u)[sec(u)]^(n-2) - \int [{tan(u)(n-2)[sec(u)]^(n-3)sec(u)tan(u)} ]\, du](https://img.qammunity.org/2021/formulas/mathematics/high-school/s7xybkbezcecye63hymcpyli1iqhg94q8t.png)
- [Integral - Alg] Multiply:
![\int {sec^n(u)} \, du = tan(u)[sec(u)]^(n-2) - \int [{tan^2(u)(n-2)[sec(u)]^(n-2)}] \, du](https://img.qammunity.org/2021/formulas/mathematics/high-school/fplefj5duc4g2paplimeztm1be6zqgzh4j.png)
- [integral - Int Rule 1] Simplify:
![\int {sec^n(u)} \, du = tan(u)[sec(u)]^(n-2) - (n-2)\int [{tan^2(u)[sec(u)]^(n-2)}] \, du](https://img.qammunity.org/2021/formulas/mathematics/high-school/s3tcz7yd3iaiyepp6mzogp3836igzg95ev.png)
- [Integral - Pythagorean Identities] Rewrite:
![\int {sec^n(u)} \, du = tan(u)[sec(u)]^(n-2) - (n-2)\int [{[sec^2(u) - 1][sec(u)]^(n-2)}] \, du](https://img.qammunity.org/2021/formulas/mathematics/high-school/8vvyjx1qwsrzpzmk7g794kyb11ixkh2vl0.png)
- [Integral - Alg] Multiply/Distribute:
![\int {sec^n(u)} \, du = tan(u)[sec(u)]^(n-2) - (n-2)\int [{sec^n(u)-[sec(u)]^(n-2)}] \, du](https://img.qammunity.org/2021/formulas/mathematics/high-school/9ae8xjicndsqnueiimcsi6ixix8ttq3mn5.png)
- [Integral - Int Rule 2] Rewrite:
![\int {sec^n(u)} \, du = tan(u)[sec(u)]^(n-2) - (n-2) [\int {sec^n(u)} \, du - \int {[sec(u)]^(n-2)} \, du ]](https://img.qammunity.org/2021/formulas/mathematics/high-school/77neki30lj8mn0abs19g1jjfum5q16nvon.png)
- [Integral - Alg] Distribute:
![\int {sec^n(u)} \, du = tan(u)[sec(u)]^(n-2) - (n-2) \int {sec^n(u)} \, du + (n-2)\int {[sec(u)]^(n-2)} \, du](https://img.qammunity.org/2021/formulas/mathematics/high-school/uy444c9bku44c3c6g08pm0jootzxx9f511.png)
- Rewrite:
![\int {sec^n(u)} \, du = sec^(n-2)(u)tan(u) - (n-2) \int {sec^n(u)} \, du + (n-2)\int {[sec(u)]^(n-2)} \, du](https://img.qammunity.org/2021/formulas/mathematics/high-school/xgc508fy7ep4ut0lhsh5s1hjq70d2vehmh.png)
- [Integral - Alg] Isolate Integral Term:
![\int {sec^n(u)} \, du + (n-2) \int {sec^n(u)} \, du = sec^(n-2)(u)tan(u) + (n-2)\int {[sec(u)]^(n-2)} \, du](https://img.qammunity.org/2021/formulas/mathematics/high-school/12nlo5ioc15goqzmdpmxx594gt3z7fajyf.png)
- [Integral - Alg] Combine Like Terms:
![(n - 1)\int {sec^n(u)} \, du = sec^(n-2)(u)tan(u) + (n-2)\int {[sec(u)]^(n-2)} \, du](https://img.qammunity.org/2021/formulas/mathematics/high-school/w8n6vbgrx9h3gn3ggzpgnuehy8b3uihgyy.png)
- [Integral 2 - Alg] Rewrite:

- [Integral - Alg] Isolate Original Integral:

And we have proved the Reduction Formula!