144k views
5 votes
Verify the following reduction formula:


\displaystyle \int \sec^n(u)\, du=(\sec^(n-2)(u)\tan(u))/(n-1)+(n-2)/(n-1)\int \sec^(n-2)(u)\, du, \; n\\eq 1

User Tomrozb
by
7.9k points

1 Answer

5 votes

Answer:

See Explanation.

General Formulas and Concepts:

Pre-Algebra

  • Distributive Property
  • Equality Properties

Algebra I

  • Combining Like Terms

Algebra II

  • Exponential Rules

Pre-Calculus

  • Pythagorean Identities: tan²(x) = sec²(x) - 1

Calculus

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Integration Rule 1:
\int {cf(x)} \, dx = c\int {f(x)} \, dx

Integration Rule 2:
\int {f(x) \pm g(x)} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Integration 1:
\int {sec^2(u)} \, du = tan(u) + C

Integration by Parts:
\int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Explanation:

Step 1: Define


\int {sec^n(u)} \, du

Step 2: Rewrite

  1. [Integral - Alg] Separate Exponents:
    \int {sec^n(u)} \, du = \int {sec^(n-2)(u)sec^2(u)} \, du

Step 3: Identify Variables

Using LIPET, we define variables to use IBP.

Use Integration 1.


u = [sec(u)]^(n-2) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sec^2(u)du\\du = (n-2)[sec(u)]^(n-3) sec(u)tan(u) \ \ \ \ \ \ \ \ v = tan(u)

Step 4: Integrate

  1. Integrate [IBP]:
    \int {sec^n(u)} \, du = tan(u)[sec(u)]^(n-2) - \int [{tan(u)(n-2)[sec(u)]^(n-3)sec(u)tan(u)} ]\, du
  2. [Integral - Alg] Multiply:
    \int {sec^n(u)} \, du = tan(u)[sec(u)]^(n-2) - \int [{tan^2(u)(n-2)[sec(u)]^(n-2)}] \, du
  3. [integral - Int Rule 1] Simplify:
    \int {sec^n(u)} \, du = tan(u)[sec(u)]^(n-2) - (n-2)\int [{tan^2(u)[sec(u)]^(n-2)}] \, du
  4. [Integral - Pythagorean Identities] Rewrite:
    \int {sec^n(u)} \, du = tan(u)[sec(u)]^(n-2) - (n-2)\int [{[sec^2(u) - 1][sec(u)]^(n-2)}] \, du
  5. [Integral - Alg] Multiply/Distribute:
    \int {sec^n(u)} \, du = tan(u)[sec(u)]^(n-2) - (n-2)\int [{sec^n(u)-[sec(u)]^(n-2)}] \, du
  6. [Integral - Int Rule 2] Rewrite:
    \int {sec^n(u)} \, du = tan(u)[sec(u)]^(n-2) - (n-2) [\int {sec^n(u)} \, du - \int {[sec(u)]^(n-2)} \, du ]
  7. [Integral - Alg] Distribute:
    \int {sec^n(u)} \, du = tan(u)[sec(u)]^(n-2) - (n-2) \int {sec^n(u)} \, du + (n-2)\int {[sec(u)]^(n-2)} \, du
  8. Rewrite:
    \int {sec^n(u)} \, du = sec^(n-2)(u)tan(u) - (n-2) \int {sec^n(u)} \, du + (n-2)\int {[sec(u)]^(n-2)} \, du
  9. [Integral - Alg] Isolate Integral Term:
    \int {sec^n(u)} \, du + (n-2) \int {sec^n(u)} \, du = sec^(n-2)(u)tan(u) + (n-2)\int {[sec(u)]^(n-2)} \, du
  10. [Integral - Alg] Combine Like Terms:
    (n - 1)\int {sec^n(u)} \, du = sec^(n-2)(u)tan(u) + (n-2)\int {[sec(u)]^(n-2)} \, du
  11. [Integral 2 - Alg] Rewrite:
    (n - 1)\int {sec^n(u)} \, du = sec^(n-2)(u)tan(u) + (n-2)\int {sec^(n-2)(u)} \, du
  12. [Integral - Alg] Isolate Original Integral:
    \int {sec^n(u)} \, du = (sec^(n-2)(u)tan(u))/(n-1) + (n-2)/(n-1) \int {sec^(n-2)(u)} \, du

And we have proved the Reduction Formula!

User Brandan
by
7.6k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories