We happen to have
![\frac17 = \frac18 + \frac1{8^2} + \frac1{8^3} + \cdots](https://img.qammunity.org/2023/formulas/mathematics/high-school/e2hirr5v8o5cpf8dng4xeed4rk4ue209fs.png)
which is to say, the base-8 representation of 1/7 is
![\frac17 \equiv 0.111\ldots_8](https://img.qammunity.org/2023/formulas/mathematics/high-school/a2xcgbg0n9bxcdb74intb0l93256xplxqb.png)
This follows from the well-known result on geometric series,
![\displaystyle \sum_(n=1)^\infty ar^(n-1) = \frac a{1-r}](https://img.qammunity.org/2023/formulas/mathematics/high-school/vh24yqrqj052jun97mm433ejvhfo3aakw8.png)
if
. With
and
, we have
![\displaystyle \sum_(n=1)^\infty \frac1{8^(n-1)} = 1 + \frac18 + \frac1{8^2} + \frac1{8^3} + \cdots \\\\ \implies \frac1{1-\frac18} = 1 + \frac18 + \frac1{8^2} + \frac1{8^3} + \cdots \\\\ \implies \frac87 = 1 + \frac18 + \frac1{8^2} + \frac1{8^3} + \cdots \\\\ \implies \frac17 = \frac18 + \frac1{8^2} + \frac1{8^3} + \cdots](https://img.qammunity.org/2023/formulas/mathematics/high-school/aw62gvdl5k5u9bt018atlchhpy04xqvame.png)
Uniformly multiplying each term on the right by an appropriate power of 2, we have
![\frac17 = \frac2{16} + (2^2)/(16^2) + (2^3)/(16^3) + (2^4)/(16^4) + (2^5)/(16^5) + (2^6)/(16^6) + \cdots](https://img.qammunity.org/2023/formulas/mathematics/high-school/ulrvp32yzwcvuuw1zk6b916ulpqssbvdlx.png)
Now observe that for
, each numerator on the right side side will contain a factor of 16 that can be eliminated.
![(2^n)/(16^n) = (2^4*2^(n-4))/(16^n) = (2^(n-4))/(16^(n-1))](https://img.qammunity.org/2023/formulas/mathematics/high-school/ai8sp05a2jontz54a606lexjxzw6zh7qmx.png)
That is,
![(2^4)/(16^4) = \frac1{16^3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ciutpgkdx2djst2ig5jsnic668j8q2esq7.png)
![(2^5)/(16^5) = \frac2{16^4}](https://img.qammunity.org/2023/formulas/mathematics/high-school/l3klrvdide21hl15uof77ta72nql2e6ovk.png)
![(2^6)/(16^6) = \frac4{16^5}](https://img.qammunity.org/2023/formulas/mathematics/high-school/shyrut1pzzpwk7z98r8kpqyaryuukn5hke.png)
etc. so that
![\frac17 = \frac2{16} + \frac4{16^2} + \frac9{16^3} + \frac2{16^4} + \frac4{16^5} + \frac9{16^6} + \cdots](https://img.qammunity.org/2023/formulas/mathematics/high-school/tzpzmo42mnv2v4q2fbcoulpot42dbis19y.png)
and thus the base-16 representation of 1/7 is
![\frac17 \equiv 0.249249249\ldots_(16)](https://img.qammunity.org/2023/formulas/mathematics/high-school/25fm0guzu31in75au286x9pxtwyxbhdalo.png)
and the first 10 digits after the (hexa)decimal point are {2, 4, 9, 2, 4, 9, 2, 4, 9, 2}.