114k views
4 votes
1) Find d/dt ( sec t/2)

User Specterace
by
5.9k points

1 Answer

4 votes

Answer:


(d)/(dt) [sec((t)/(2) )] = (1)/(2) sec((t)/(2) )tan((t)/(2) )

General Formulas and Concepts:

Calculus

  • Chain Rule:
    (d)/(dx)[f(g(x))] =f'(g(x)) \cdot g'(x)
  • Trig u derivative:
    (d)/(dt) [sec(u)] = u'[sec(u)tan(u)]

Explanation:

Step 1: Define


(d)/(dt) [sec((t)/(2) )]

Step 2: Differentiate

  1. Trig u [Chain Rule/Basic Power]:
    (d)/(dt) [sec((t)/(2) )] = (t^(1-1))/(2) sec((t)/(2) )tan((t)/(2) )
  2. Simplify:
    (d)/(dt) [sec((t)/(2) )] = (t^(0))/(2) sec((t)/(2) )tan((t)/(2) )
  3. Evaluate:
    (d)/(dt) [sec((t)/(2) )] = (1)/(2) sec((t)/(2) )tan((t)/(2) )
User Zoti
by
5.3k points