Answer:
20.4 years (nearest tenth)
Explanation:
Compound Interest Formula
![\large \text{$ \sf A=P\left(1+(r)/(n)\right)^(nt) $}](https://img.qammunity.org/2023/formulas/mathematics/college/a2h2k73eemgbrq3rhqgu7istzwptcok98e.png)
where:
- A = final amount
- P = principal amount
- r = interest rate (in decimal form)
- n = number of times interest applied per time period
- t = number of time periods elapsed
Given:
- A = $15,000
- P = $6,000
- r = 4.5% = 0.045
- n = 12 (monthly)
Substitute the given values into the formula and solve for t:
![\implies \sf 15000=6000\left(1+(0.045)/(12)\right)^(12t)](https://img.qammunity.org/2023/formulas/mathematics/high-school/cn1oht9qekw27k8fqzmuk4ulpef5tyubua.png)
![\implies \sf (15000)/(6000)=\left(1.00375\right)^(12t)](https://img.qammunity.org/2023/formulas/mathematics/high-school/3knfjkm73w15nyk7ecz9qdo69ybyor7aj8.png)
![\implies \sf 2.5=\left(1.00375\right)^(12t)](https://img.qammunity.org/2023/formulas/mathematics/high-school/xyoumn9nx2f64nhhtgns4qja61yie5jufd.png)
![\implies \sf \ln (2.5)=\ln \left(1.00375\right)^(12t)](https://img.qammunity.org/2023/formulas/mathematics/high-school/2ufi2xa745qwf0xnon6j4d6rp3uwhscxyk.png)
![\implies \sf \ln (2.5)=12t \ln \left(1.00375\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/vguzyeo005xob1wow5cvroe86bx0wbnqqc.png)
![\implies \sf t=(\ln (2.5))/(12 \ln (1.00375))](https://img.qammunity.org/2023/formulas/mathematics/high-school/qjefn7r5xt28b764h2y8zxcrokflexh5hs.png)
![\implies \sf t=20.40017123](https://img.qammunity.org/2023/formulas/mathematics/high-school/ntvtncko78vdm0dldntjrbp2e8dehykie6.png)
Therefore, it would take 20.4 years (nearest tenth) for the investment to reach $15,000.