8.0k views
0 votes
Please anyone help me 38 points

Please anyone help me 38 points-example-1
User Mollymerp
by
7.4k points

1 Answer

3 votes

Answer:

An equation for the parabola would be y²=-19x.

Since we have x=4.75 for the directrix, this tells us that the parabola's axis of symmetry runs parallel to the x-axis. This means we will use the standard form

(y-k)²=4p(x-h), where (h, k) is the vertex, (h+p, k) is the focus and x=h-p is the directrix.

Beginning with the directrix:

x=h-p=4.75

h-p=4.75

Since the vertex is at (0, 0), this means h=0 and k=0:

0-p=4.75

-p=4.75

p=-4.75

Substituting this into the standard form as well as our values for h and k we have:

(y-0)²=4(-4.75)(x-0)

y²=-19x

Explanation:

GOOD LUCK

User Petershine
by
8.0k points