Answer:
0.02566
0.972559
Explanation:
Given that :
Sample size (n) = 36
σ² = 6
sample variance S^2
a) greater than 9.1;
b) between 3.5 and 10.5.
The degree do freedom (df) = n - 1
S² > 9.1
P(S² > 9.1) = X² > ((n - 1) * S²) / 6
P(S² > 9.1) = ((36 - 1) * 9.1) / 6
P(S² > 9.1) = (35 * 9.1) / 6
P(S² > 9.1) = 53.083
P(X² > 53.08) = 0.02566 ( chi square distribution calculator)
b) between 3.5 and 10.5.
((36 - 1) * 3.5) / 6 ≤ S² ≤ ((36 - 1) * 10.5) / 6
20.416666 ≤ S² ≤ 61.25
Using the Chisquare distribution calculator :
P(X² > 20.42) = 0.9765
P(X² > 61.25) = 0.003941
Hence,
0.9765 - 0.003941 = 0.972559