37.4k views
0 votes
A deuterium atom is a hydrogen atom with a neutron added to its nucleus. Approximate the binding energy of this nucleus, given that the mass of the deuterium atom is 2.014102 u and the masses of a hydrogen atom and a neutron are 1.007825 u and 1.008665 u, respectively.

a. 2 GeV.
b. 2 keV.
c. 2 MeV.
d. 2 eV.

1 Answer

1 vote

Answer:

c. 2 MeV.

Step-by-step explanation:

The computation of the binding energy is shown below


= [Zm_p + (A - Z)m_n - N]c^2\\\\=[(1) (1.007825u) + (2 - 1 ) ( 1.008665 u) - 2.014102 u]c^2\\\\= (0.002388u)c^2\\\\= (.002388) (931.5 MeV)\\\\=2.22 MeV

= 2 MeV

As 1 MeV = (1 u) c^2

hence, the binding energy is 2 MeV

Therefore the correct option is c.

We simply applied the above formula so that the correct binding energy could come

And, the same is to be considered

User Puspam
by
4.4k points