Answer:
y-coordinate is decreasing at the rate of
unit/sec.
Explanation:
Given that:
The curve of the particle
![x^2y = 1](https://img.qammunity.org/2021/formulas/mathematics/college/nyqydvwm7w7utupngfmgxd6mpfoy9neam9.png)
Then:
![y = (1)/(x^2)](https://img.qammunity.org/2021/formulas/mathematics/college/b21i96vawp0kqjwpj94hi0fa6pmsj0gt1n.png)
Taking the differential of y with respect to t
![(dy)/(dt)= (dx^(-2))/(dx) * (dx)/(dt)](https://img.qammunity.org/2021/formulas/mathematics/college/jmitrv45e0rx6egwyfu25fxaqme837i1ku.png)
![= -2x^(-3) (dx)/(dt)](https://img.qammunity.org/2021/formulas/mathematics/college/309e8g5kfpy5larbtipirdyzpmkh1xh7jd.png)
At (2, 1/4)
![(dx)/(dt) = 2](https://img.qammunity.org/2021/formulas/mathematics/college/cxr4u52j85nqnnhisggl5ryx4k7sl5rgrp.png)
This implies that:
![\implies (dy)/(dt) = -(2)/(8)(2)](https://img.qammunity.org/2021/formulas/mathematics/college/9h0fr1wcs6le49mcpqdofb220j7ov3r6a9.png)
![(dy)/(dt) = -(1)/(2) \ \ unit/sec](https://img.qammunity.org/2021/formulas/mathematics/college/i2if8is2kz554edlah5rt5zra8b5cwcw5e.png)
Thus, y-coordinate is decreasing at the rate of
unit/sec.