Answer:
Rate of increase of radius = 0.0064 ft/sec
Rate of increase of surface area = 1.61
![ft^2/sec](https://img.qammunity.org/2021/formulas/mathematics/college/avomggilh8huuf0dv9xn0ggbux1zw113fa.png)
Explanation:
Given that:
Rate of change of volume of a spherical balloon = 8 cubic feet per minute
![(dV)/(dt) = 8 ft^3/min](https://img.qammunity.org/2021/formulas/mathematics/college/bvmno9frvifuqlyzts51wtqpdzx179h9n4.png)
Radius,
= 10 feet
To find:
The rate of change of radius at this moment and rate of change of surface area at this moment?
Solution:
First of all, let us have a look at the formula:
![1.\ V = (4)/(3)\pi r^3\\2.\ A =4\pi r^2](https://img.qammunity.org/2021/formulas/mathematics/college/za1zqew78xtwapadify0kmqutr7wvnw11h.png)
Now, differentiating the volume and area, we get:
![(dV)/(dt) = (4)/(3)* 3 \pi r^2 (dr)/(dt)\\\Rightarrow (dV)/(dt) = 4 \pi r^2 (dr)/(dt)](https://img.qammunity.org/2021/formulas/mathematics/college/e7om09qcqivbbln1l5pn05fly56qb07nqw.png)
![(dA)/(dt) = 4\pi * 2 r (dr)/(dt)\\\Rightarrow (dA)/(dt) = 8\pi r (dr)/(dt)](https://img.qammunity.org/2021/formulas/mathematics/college/vvanbkwtvbacd740fnc2xl1yya92hqwn3k.png)
![(dV)/(dt) = 8 = 4\pi r^2 (dr)/(dt)\\\Rightarrow 8 = 4* 3.14 * 10^2 (dr)/(dt)\\\Rightarrow 2 = 3.14 * 10^2 (dr)/(dt)\\\Rightarrow (dr)/(dt) = 0.0064\ ft/sec](https://img.qammunity.org/2021/formulas/mathematics/college/56lj71hqo6q57xdqrdqto48tlrmtuyayq6.png)
![(dA)/(dt) = 8* \pi * r (dr)/(dt)\\\Rightarrow (dA)/(dt) = 8* 3.14 * 10 * 0.0064\\\Rightarrow (dA)/(dt) = \bold{1.61 \ ft^2/sec}](https://img.qammunity.org/2021/formulas/mathematics/college/btztu2bwhcifkw1sdxuuqaj9v9ig3cszcr.png)