Given:
A line through the points (7,1,-5) and (3,4,-2).
To find:
The parametric equations of the line.
Solution:
Direction vector for the points (7,1,-5) and (3,4,-2) is
![\vec {v}=\left<x_2-x_1,y_2-y_1,z_2-z_1\right>](https://img.qammunity.org/2021/formulas/mathematics/college/fy69klyw9f45qo7nirq0u5naop30lg78rx.png)
![\vec {v}=\left<3-7,4-1,-2-(-5)\right>](https://img.qammunity.org/2021/formulas/mathematics/college/vzqx6cdmlm3vfrb6a9926sal0um70p2pla.png)
![\vec {v}=\left<-4,3,3\right>](https://img.qammunity.org/2021/formulas/mathematics/college/of1woje0a2zpme1cyyfrctsaoipzzg11qa.png)
Now, the perimetric equations for initial point
with direction vector
, are
![x=x_0+at](https://img.qammunity.org/2021/formulas/mathematics/college/8kgihs752jya6gz4gmtakpa0cdb3sy9vw2.png)
![y=y_0+bt](https://img.qammunity.org/2021/formulas/mathematics/college/u74qczxd1t66b8i3eoormw5nkhazx3t2h4.png)
![z=z_0+ct](https://img.qammunity.org/2021/formulas/mathematics/college/sa9kuly9ln3amtrimu9c2fsfd2fgt9njha.png)
The initial point is (7,1,-5) and direction vector is
. So the perimetric equations are
![x=(7)+(-4)t](https://img.qammunity.org/2021/formulas/mathematics/college/6llswf2m1kgwb3lwa8oxb01mqqmaacd24m.png)
![x=7-4t](https://img.qammunity.org/2021/formulas/mathematics/college/ezwc7ht1sfoxpbxl55zzh9h5ol3im53k80.png)
Similarly,
![y=1+3t](https://img.qammunity.org/2021/formulas/mathematics/college/pcoerp2c30o7eb41prmo4xtd7b3i68lno9.png)
![z=-5+3t](https://img.qammunity.org/2021/formulas/mathematics/college/e47rff96uampzy4viskjvdd22wsua03962.png)
Therefore, the required perimetric equations are
and
.