Answer:
(a) 5.89 ft/s
(b) x= 1.77 ft
Step-by-step explanation:
Given that the acceleration of the particle, a=-k/x
As
, so
![v(dv)/(dx)=-(k)/(x) \\\\\Rightarrow vdv=-k(dx)/(x) \\\\](https://img.qammunity.org/2021/formulas/engineering/college/chzlcc8bbqjl9kw95rxj9mgfsyon8oceec.png)
On integrating both sides, we have
![(v^2)/(2)=-k\ln(x) + C\cdots(i)](https://img.qammunity.org/2021/formulas/engineering/college/wn7pj75fg33x59ve10j5wzrsse4la2h000.png)
where C is a constant.
At x=0.6 ft, v=15 ft/s
From equation (i)
![(15^2)/(2)=-k\ln(0.6) + C \\\\\Rightarrow C=(225)/(2) + k\ln(0.6) \cdots(ii)](https://img.qammunity.org/2021/formulas/engineering/college/9rk16fa0lbn1kjycrncbm9rhrm0eptp82p.png)
Similarly, at x=1.2 ft, v=9 ft/s
![(9^2)/(2)=-k\ln(1.2) + C \\\\\Rightarrow (81)/(2) = -k\ln(1.2) + (225)/(2) + k\ln(0.6) \\\\\Rightarrow k(\ln(1.2) - \ln(0.6))= (225)/(2)-(81)/(2) \\\\\Rightarrow k\ln(1.2/0.6)= 72 \\\\\Rightarrow k = 72 / ln(2)=103.87](https://img.qammunity.org/2021/formulas/engineering/college/2a9oktvbpa641jllrvme6a7anzqcmfh00o.png)
From equation (ii),
![C=(225)/(2) + 103.87 * \ln(0.6) \\\\\Rightarrow C=112.5-53.06=59.44](https://img.qammunity.org/2021/formulas/engineering/college/4xe0w273vbyd2qibfe6p6h9jg9kk3r6cu9.png)
Putting the value of k and C in the equation (i), we have
![(v^2)/(2)=-103.87\ln(x) + 59.44 \\\\\Rightarrow v^2=-207.74\ln(x) + 118.88 \\\\\Rightarrow v = √(-207.74\ln(x) + 118.88)](https://img.qammunity.org/2021/formulas/engineering/college/kbtl88tcm2khtqyrmsi57pkr0xt6ovr1hy.png)
(a) At x=1.5 ft, the velocity of the particle is
![\Rightarrow v = √(-207.74\ln(1.5) + 118.88) \\\\](https://img.qammunity.org/2021/formulas/engineering/college/l0gor33i8rtqeb1v3a14j2hj9vp0d170fd.png)
ft/s
At x=1.5 ft, the velocity of the particle is 5.89 ft/s.
(b) For v=0, we have
![\Rightarrow 0 = √(-207.74\ln(x) + 118.88) \\\\\Rightarrow \ln(x) = -118.88/-207.74=0.572 \\\\\Rightarrow x= e^(0.572) \\\\](https://img.qammunity.org/2021/formulas/engineering/college/qhwzfnzx5ut79ojqj0o7t0z5g9gmija107.png)
ft
At x= 1.77 ft the velocity of the particle is zero.