163k views
4 votes

{ \cos^(4)\alpha} \: + \sin^(2) \alpha \: \: = \: (1)/(4) (3 + \cos4 \alpha )

Prove::​

User Duyue
by
4.0k points

1 Answer

2 votes

Answer:

Proved

Explanation:


cos^4\alpha +sin^4\alpha =(1)/(4)(3+cos4\alpha )\\\\

Take the Left Hand Side:


cos^4\alpha +sin^4\alpha\\\\(cos^2\alpha )^2+(sin^2\alpha )^2\\\\((1+cos2\alpha )/(2))^2+((1-cos2\alpha )/(2))^2 \\\\(1+2cos2\alpha +cos^22\alpha )/(4)+(1-2cos2\alpha +cos^22\alpha )/(4) \\\\


(1+2cos2\alpha +cos^22\alpha +1-2cos2\alpha +cos^22\alpha )/(4) \\\\(2+2cos^22\alpha )/(4) \\\\(1+cos^22\alpha )/(2) \\\\(1)/(2)(1+cos^22\alpha )\\\\


(1)/(2)(1+(1+cos4\alpha )/(2))


(1)/(2)((2+1+cos4\alpha )/(2))\\\\(1)/(4)(3+cos4\alpha )\\\\

Hence Proved!

The following identities were used are attached in an image

{ \cos^(4)\alpha} \: + \sin^(2) \alpha \: \: = \: (1)/(4) (3 + \cos4 \alpha ) Prove-example-1
User Neridaj
by
4.1k points