27,156 views
18 votes
18 votes
Find (f • g) (x) Assume x>0

Find (f • g) (x) Assume x>0-example-1
User Ninehundreds
by
2.4k points

1 Answer

28 votes
28 votes

Answer:


\textsf{B.} \quad (f \cdot g)(x)=10x

Explanation:

Given:


\begin{cases}f(x)=√(50x)\\g(x)=√(2x)\end{cases}


\begin{aligned}\textsf{As }(f \cdot g)(x) & = f(x) \cdot g(x)\\\implies (f \cdot g)(x)& = √(50x) \cdot √(2x)\end{aligned}


\textsf{Apply radical rule} \quad √(a)√(b)=√(ab):


\begin{aligned}\implies (f \cdot g)(x) &= √(50x2x)\\& = √(100x^2)\end{aligned}

Rewrite 100 as 10²:


\implies (f \cdot g)(x)=√(10^2x^2)


\textsf{Apply exponent rule} \quad a^bc^b=(ac)^b:


\implies (f \cdot g)(x)= √((10x)^2)


\textsf{Apply radical rule} \quad √(a^2)=a, \quad a \geq 0:


\implies (f \cdot g)(x)=10x

User Mayous
by
3.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.