Answer:
x = 25
Explanation:
From the picture attached,
ΔABC and ΔADE are the similar triangles.
Therefore, their corresponding sides will be in the same ratio.
![\frac{\text{AB}}{\text{AD}}=\frac{\text{AC}}{\text{AE}}=\frac{\text{BC}}{\text{DE}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/16k2gx0tlhrlk6xxno034k1a5lme18pios.png)
![\frac{\text{AB}}{\text{AD}}=\frac{\text{BC}}{\text{DE}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/8ji0af73vgcf0706ke2ppq31boffijr15d.png)
And AB = AD + DB
= 2(AD) [Since, AD = DB]
By substituting these values,
![\frac{\text{2AD}}{\text{AD}}=\frac{\text{34}}{\text{(x-8)}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/zi2ubyquj6awgvy4mrrvdiducbunq4sgzu.png)
2 =
![(34)/(x-8)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jhn49ssb0btpenwyj5hgpa5owtu32gzyw9.png)
x - 8 =
![(34)/(2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/u4j5305fnfusta91g6typ1wf54z6izdoed.png)
x - 8 = 17
x = 17 + 8
x = 25