153k views
3 votes
What is the distance between (-2 1/2, -3) and (1, -3)​

User JayG
by
8.2k points

1 Answer

4 votes

Answer:

The distance between (-2 1/2, -3) and (1, -3)​ will be:


  • d=(7)/(2)

Explanation:

Given the points

  • (-2 1/2, -3)
  • (1, -3)​


\mathrm{Convert\:mixed\:numbers\:to\:improper\:fraction:}\:a(b)/(c)=(a\cdot \:c+b)/(c)


-2(1)/(2)=-(5)/(2)

so the point becomes (-5/2, -3)

Finding the distance between (-5/2, -3) and (1, -3):


\mathrm{Compute\:the\:distance\:between\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad √(\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2)


\mathrm{The\:distance\:between\:}\left(-(5)/(2),\:-3\right)\mathrm{\:and\:}\left(1,\:-3\right)\mathrm{\:is\:}


d=\sqrt{\left(1-\left(-(5)/(2)\right)\right)^2+\left(-3-\left(-3\right)\right)^2}


=\sqrt{\left((5)/(2)+1\right)^2+\left(3-3\right)^2}


=\sqrt{(7^2)/(2^2)+0}


=\sqrt{(7^2)/(2^2)}


\mathrm{Apply\:radical\:rule\:}\sqrt[n]{(a)/(b)}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}},\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0


=(√(7^2))/(√(2^2))


\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0


=(7)/(2)

Thus, the distance between (-2 1/2, -3) and (1, -3)​ will be:


  • d=(7)/(2)
User Sam Boosalis
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories