153k views
3 votes
What is the distance between (-2 1/2, -3) and (1, -3)​

User JayG
by
4.8k points

1 Answer

4 votes

Answer:

The distance between (-2 1/2, -3) and (1, -3)​ will be:


  • d=(7)/(2)

Explanation:

Given the points

  • (-2 1/2, -3)
  • (1, -3)​


\mathrm{Convert\:mixed\:numbers\:to\:improper\:fraction:}\:a(b)/(c)=(a\cdot \:c+b)/(c)


-2(1)/(2)=-(5)/(2)

so the point becomes (-5/2, -3)

Finding the distance between (-5/2, -3) and (1, -3):


\mathrm{Compute\:the\:distance\:between\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad √(\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2)


\mathrm{The\:distance\:between\:}\left(-(5)/(2),\:-3\right)\mathrm{\:and\:}\left(1,\:-3\right)\mathrm{\:is\:}


d=\sqrt{\left(1-\left(-(5)/(2)\right)\right)^2+\left(-3-\left(-3\right)\right)^2}


=\sqrt{\left((5)/(2)+1\right)^2+\left(3-3\right)^2}


=\sqrt{(7^2)/(2^2)+0}


=\sqrt{(7^2)/(2^2)}


\mathrm{Apply\:radical\:rule\:}\sqrt[n]{(a)/(b)}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}},\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0


=(√(7^2))/(√(2^2))


\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0


=(7)/(2)

Thus, the distance between (-2 1/2, -3) and (1, -3)​ will be:


  • d=(7)/(2)
User Sam Boosalis
by
5.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.