Answer:
or
![\sqrt[10]{3^7}](https://img.qammunity.org/2023/formulas/mathematics/high-school/wcuw1b5vweyyt6haq8zv902jjwq13zil69.png)
Explanation:
![\left(√(3)\right)\left(\sqrt[5]{3}\right)=\sqrt[10]{3^7}\quad](https://img.qammunity.org/2023/formulas/mathematics/high-school/bctvbpdarylozuno1pwmn09rec1uqf1otw.png)
(√3)(
) = √3 ·
![\sqrt[5]{3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1uat3iwmmsptsc262z10h3hmpmobv0epe3.png)
{√3 =
} {radical rule:
}
![\sqrt3](https://img.qammunity.org/2023/formulas/mathematics/college/14rtjgf3actcwldrcvdv71nzssnt1kwkn2.png)
=
·
![\sqrt[5]{3}](https://img.qammunity.org/2023/formulas/mathematics/high-school/1uat3iwmmsptsc262z10h3hmpmobv0epe3.png)
{
=
} {radical rule:
}
·
=
·
{exponent rule:
}
(1/2 + 1/5 = 5/10 + 2/10 = 7/10)
{opposite of radical rule:
;
}
=
![\sqrt[10]{3^7}](https://img.qammunity.org/2023/formulas/mathematics/high-school/wcuw1b5vweyyt6haq8zv902jjwq13zil69.png)
so, the simplified version of this equation can either be written as:
or
![\sqrt[10]{3^7}](https://img.qammunity.org/2023/formulas/mathematics/high-school/wcuw1b5vweyyt6haq8zv902jjwq13zil69.png)
hope this helps!!
(I can't clearly see the last option, but if it's either of these, then it's correct)