Answer:
![k = 0.5](https://img.qammunity.org/2021/formulas/mathematics/college/pqjup5ghb90p407wlf8gqtxqvvuquyqym2.png)
Explanation:
Given
![(x,y) = (6,3)](https://img.qammunity.org/2021/formulas/mathematics/college/gij7bgj12jm7we3qkl08q54ydz0umi5j81.png)
Required
Determine the constant of variation
Since it is a direct variation, the following relationship exists:
![y = kx](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1gd3aqw83dm1pbbole5g3vytvoi3pw440d.png)
Where k represents the constant.
Substitute 6 for x and 3 for y
![3 = k * 6](https://img.qammunity.org/2021/formulas/mathematics/college/htmmo2lgiu0oqdh8842ohqvw6qjjawol2a.png)
![3 = 6k](https://img.qammunity.org/2021/formulas/mathematics/college/pgf1ge607v0luuual0espbsxo3cn9erq6n.png)
Make k the subject
![k = (3)/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/bahindcgqiec4rwwezsprcxrmwyxs8099h.png)
![k = 0.5](https://img.qammunity.org/2021/formulas/mathematics/college/pqjup5ghb90p407wlf8gqtxqvvuquyqym2.png)
Hence, the constant of variation is 0.5