Given that,
A TV is 27 inch diagonally across the screen.
To find,
The dimensions that best describes a 37 inch TV.
Solution,
Let a and b are length and width of the TV. Let c be the diagonal. Using Pythagoras theorem,
![c=√(a^2+b^2)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/rwzqwkbf9lr7rj5hr098trfnfjpyrhgyqr.png)
If dimensions are 15 x 34,
![c=\sqrt{15^(2)+34^(2)}\\\\=37.16\ inch](https://img.qammunity.org/2021/formulas/mathematics/high-school/itg5kxhefx3x04xoq6xzgp5z40ve4qnuur.png)
If dimensions are 16.5 x 32,
![c=\sqrt{16.5^(2)+32^(2)}\\\\=36.003\ inch](https://img.qammunity.org/2021/formulas/mathematics/high-school/pqt0b2i4ihdfizwat5beexar8qb2zehm08.png)
If dimensions are 17 x 28,
![c=\sqrt{17^(2)+28^(2)}\\\\=32.756\ inch](https://img.qammunity.org/2021/formulas/mathematics/high-school/j8qyxutvdgxq3pb9sul759aa89x2m4uyxl.png)
If dimensions are 17 x 32,
![c=\sqrt{17^(2)+32^(2)}\\\\=36.23\ inch](https://img.qammunity.org/2021/formulas/mathematics/high-school/ey9q9s926zgvfavthpn0u68u8knv64zb8h.png)
It is clear that if dimensions are 15 x 34, the diagonal is 37 inches. Hence, the correct option is (a).