Answer:
0.63 s
Step-by-step explanation:
From the question given above, the following data were obtained:
Mass (m) = 50 g
Extention (e) = 10 cm
Period (T) =?
Next, we obtained 50 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
50 g = 50 g × 1 Kg / 1000 g
50 g = 0.05 kg
Next, we shall convert 10 cm to m. This is illustrated below:
100 cm = 1 m
Therefore,
10 cm = 10 cm × 1 m / 100 cm
10 cm = 0.1 m
Next, we shall determine the force exerted on the spring. This can be obtained as follow:
Mass = 0.05 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Force (F) =?
F = mg
F = 0.05 × 9.8
F = 0.49 N
Next, we shall determine the spring constant of the spring.
Extention (e) = 0.1 m
Force (F) = 0.49 N
Spring constant (K) =?
F = Ke
0.49 = K × 0.1
Divide both side by 0.1
K = 0.49 /0.1
K = 4.9 N/m
Finally, we shall determine the period as follow:
Mass = 0.05 Kg
Spring constant (K) = 4.9 N/m
Pi (π) = 3.14
Period (T) =?
T = 2π√(m/k)
T = 2 × 3.14 × √(0.05 / 4.9)
T = 6.28 × √(0.05 / 4.9)
T = 0.63 s
Thus, the period of oscillation is 0.63 s