235k views
10 votes
St^2 e^-10t dt
Evaluate the intergral

User L Bahr
by
3.3k points

1 Answer

4 votes

It looks like you're talking about the indefinite integral


\displaystyle \int t^2 e^(-10t) \, dt

Integrate by parts:


\displaystyle u\,dv = uv - \int v\,du

Let


u = t^2 \implies du = 2t \, dt


dv = e^(-10t) \, dt \implies v = -\frac1{10} e^(-10t)

Then


\displaystyle \int t^2 e^(-10t) \, dt = -\frac1{10} t^2 e^(-10t) + \frac15 \int t e^(-10t) \, dt

Integrate by parts again, this time with


u = t \implies du = dt


dv = e^(-10t) \, dt \implies v = -\frac1{10} e^(-10t)

Then


\displaystyle \int t e^(-10t) \, dt = -\frac1{10} t e^(-10t) + \frac1{10} \int e^(-10t) \, dt

Putting everything together, we get


\displaystyle \int t^2 e^(-10t) \, dt = -\frac1{10} t^2 e^(-10t) + \frac15 \int t e^(-10t) \, dt


\displaystyle \int t^2 e^(-10t) \, dt = -\frac1{10} t^2 e^(-10t) + \frac15 \left(-\frac1{10} t e^(-10t) + \frac1{10} \int e^(-10t) \, dt\right)


\displaystyle \int t^2 e^(-10t) \, dt = -\frac1{10} t^2 e^(-10t) - \frac1{50} t e^(-10t) + \frac1{50} \int e^(-10t) \, dt


\displaystyle \int t^2 e^(-10t) \, dt = -\frac1{10} t^2 e^(-10t) - \frac1{50} t e^(-10t) + \frac1{50} \left(-\frac1{10} e^(-10t)\right) + C


\displaystyle \int t^2 e^(-10t) \, dt = -\frac1{10} t^2 e^(-10t) - \frac1{50} t e^(-10t) - \frac1{500} e^(-10t) + C


\displaystyle \int t^2 e^(-10t) \, dt = \boxed{-(e^(-10t))/(500) \left(50t^2 + 10t + 1\right) + C}

User Afxjzs
by
3.4k points