180k views
14 votes
Find the slope and distance.
(6,-6) and (-6,+8)​

2 Answers

5 votes

Hii!

___________________________________________________________


\stackrel\bigstar{\rightsquigarrow\circ\boldsymbol{\underbrace{Answer}\circ\leftharpoonup}}

Slope =

Distance =


\stackrel\bigstar{\rightsquigarrow\circ\boldsymbol{\underbrace{Explanation}\circ\leftharpoonup}}


\bullet Let's work out the slope


\twoheadrightarrow\sf \cfrac{y2-y1}{x2-x1}


\bullet Stickin the values


\twoheadrightarrow\sf \cfrac{8-(-6)}{-6-6}


\bullet Simplify


\twoheadrightarrow\sf \cfrac{8+6}{-12}


\bullet Finish simplifying


\twoheadrightarrow\sf \cfrac{14}{-12}


\bullet Reduce the fraction


\twoheadrightarrow\sf \cfrac{7}{-6}

____________________________________


\bullet Work out the distance


\twoheadrightarrow\sf √((x2-x1)^2+(y2-y1)^2)


\bullet Stick in the values


\twoheadrightarrow\sf √((-6-6)^2+(8-(-6)^2)


\bullet Simplify the radical expression


\twoheadrightarrow\sf √((-12)^2+14^2)\\\\\twoheadrightarrow\sf √(144+169) \\\\\twoheadrightarrow\sf √(340)\\\\\twoheadrightarrow\sf √(85\cdot4) \quad (simplifying\,the\,surd)


\ddagger
\boldsymbol{DISTANCE=2√(85) \,Units}
\ddagger

--

Hope that this helped! Best wishes.

--

User Chan Austin
by
4.3k points
13 votes

Answer:


\rm slope: -(7)/(6)


\rm Distance: 2√(85) \ units

Part A


\sf slope: (y_2 - y_1)/(x_2- x_1) = (\triangle y )/(\triangle x) \ \ where \ (x_1 , \ y_1), ( x_2 , \ y_2) \ are \ points

Here given points are: (6, -6), (-6, 8)

Insert the values:


\sf \rightarrow slope: (8-(-6))/(-6-6)


\sf \rightarrow slope: (8+ 6)/(-12)


\sf \rightarrow slope: (14)/(-12)


\sf \rightarrow slope: -(7)/(6)

Part B


\sf Distance \ between \ points : \sf d = √((x_2 - x_1)^2 + (y_2-y_1)^2)

Using the formula,


\sf d = √((-6 - 6)^2 + (8-(-6))^2)


\sf d = √((-12)^2 + (14)^2)


\sf d = √(144 +196)


\sf d = √(340)


\sf d = √(85 * 4)


\sf d = 2√(85)

Hence, the distance is 2√85 units.

User Josef Biehler
by
4.0k points