180k views
14 votes
Find the slope and distance.
(6,-6) and (-6,+8)​

2 Answers

5 votes

Hii!

___________________________________________________________


\stackrel\bigstar{\rightsquigarrow\circ\boldsymbol{\underbrace{Answer}\circ\leftharpoonup}}

Slope =

Distance =


\stackrel\bigstar{\rightsquigarrow\circ\boldsymbol{\underbrace{Explanation}\circ\leftharpoonup}}


\bullet Let's work out the slope


\twoheadrightarrow\sf \cfrac{y2-y1}{x2-x1}


\bullet Stickin the values


\twoheadrightarrow\sf \cfrac{8-(-6)}{-6-6}


\bullet Simplify


\twoheadrightarrow\sf \cfrac{8+6}{-12}


\bullet Finish simplifying


\twoheadrightarrow\sf \cfrac{14}{-12}


\bullet Reduce the fraction


\twoheadrightarrow\sf \cfrac{7}{-6}

____________________________________


\bullet Work out the distance


\twoheadrightarrow\sf √((x2-x1)^2+(y2-y1)^2)


\bullet Stick in the values


\twoheadrightarrow\sf √((-6-6)^2+(8-(-6)^2)


\bullet Simplify the radical expression


\twoheadrightarrow\sf √((-12)^2+14^2)\\\\\twoheadrightarrow\sf √(144+169) \\\\\twoheadrightarrow\sf √(340)\\\\\twoheadrightarrow\sf √(85\cdot4) \quad (simplifying\,the\,surd)


\ddagger
\boldsymbol{DISTANCE=2√(85) \,Units}
\ddagger

--

Hope that this helped! Best wishes.

--

User Chan Austin
by
7.8k points
13 votes

Answer:


\rm slope: -(7)/(6)


\rm Distance: 2√(85) \ units

Part A


\sf slope: (y_2 - y_1)/(x_2- x_1) = (\triangle y )/(\triangle x) \ \ where \ (x_1 , \ y_1), ( x_2 , \ y_2) \ are \ points

Here given points are: (6, -6), (-6, 8)

Insert the values:


\sf \rightarrow slope: (8-(-6))/(-6-6)


\sf \rightarrow slope: (8+ 6)/(-12)


\sf \rightarrow slope: (14)/(-12)


\sf \rightarrow slope: -(7)/(6)

Part B


\sf Distance \ between \ points : \sf d = √((x_2 - x_1)^2 + (y_2-y_1)^2)

Using the formula,


\sf d = √((-6 - 6)^2 + (8-(-6))^2)


\sf d = √((-12)^2 + (14)^2)


\sf d = √(144 +196)


\sf d = √(340)


\sf d = √(85 * 4)


\sf d = 2√(85)

Hence, the distance is 2√85 units.

User Josef Biehler
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories