459,455 views
15 votes
15 votes
5. Find the quadratic equation with root alpha and beta,given that alpha-beta=2 and alpha^2-beta^2=3.​

User Ghazal
by
2.9k points

1 Answer

23 votes
23 votes

Answer:


x^(2)-(3)/(2) x-(7)/(16) =0

Explanation:


\begin{cases}\alpha -\beta =2\\ \alpha^(2) -\beta^(2) =3\end{cases}


\Longleftrightarrow \begin{cases}\alpha -\beta =2&\\ \left( \alpha +\beta \right) \left( \alpha -\beta \right) =3&\end{cases}


\Longleftrightarrow \begin{cases}\alpha -\beta =2&\\ \alpha +\beta =(3)/(2) &\end{cases}

Then

2α = 2 + 3/2 = 7/2

2β = (3/2) - 2 = -1/2

Then

Then

α = 7/4

β = -1/4

Then

a quadratic equation with root α and β can be :


\left( x+(1)/(4) \right) \left( x-(7)/(4) \right) =0


\Longrightarrow x^(2)-(3)/(2) x-(7)/(16) =0

User Russ Clarke
by
3.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.