74.1k views
18 votes
Find 2^x=4x, find x ​

Find 2^x=4x, find x ​-example-1
User Evelin
by
7.7k points

1 Answer

10 votes

Whatever... I'll try to solve the first two problems.


2^x=4x\\4x=e^(\ln 2^x)\\4x=e^(x\ln 2)\\(1)/(4x)=e^(-x \ln 2)\\-(\ln 2)/(4)=-x\ln 2e^(-x \ln 2)\\-x\ln 2=W\left(-(\ln 2)/(4)\right)\\x=-(W\left(-(\ln 2)/(4)\right))/(\ln 2)

1.


x=\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+√(5\ldots)}}}}}\qquad\left( x\geq0\right)\\\\x=\sqrt{13+√(5+x)}\\\\x^2=13+√(5+x)\\√(5+x)=x^2-13\\\\D:5+x\geq0 \wedge x^2-13\geq 0\wedge x\geq 0\\D:x\geq-5 \wedge x^2\geq13\wedge x\geq 0\\D:x\geq √(13) \vee x\leq-√(13)\wedge x\geq0 \\D:x\in[√(13),\infty)\\\\ 5+x=x^4-26x^2+169\\x^4-26x^2-x+164=0\\\vdots\\(x - 4) (x^3 + 4 x^2 - 10 x - 41) = 0\\x-4=0\\x=4

One solution is
x=4, and
4\in D, therefore
\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+√(5\ldots)}}}}}=4.

We can ignore other possible solutions of the polynomial equation, because the expression can not be equal to two different values simultaneously.

User Max Gasner
by
8.0k points

No related questions found