28,086 views
11 votes
11 votes
Pls solve this question ​

Pls solve this question ​-example-1
User Nikeros
by
2.9k points

1 Answer

15 votes
15 votes

Answer:


{( \sqrt{ {x}^( - 3) }) }^(5) = ({( {x}^( - 3)) }^{ (1)/(2) } ) ^(5) \\ \\ = {x}^{ - 3 * (1)/(2) * 5} = {x}^{ - (15)/(2) } = \frac{1}{ {x}^{ (15)/(2) } }

Or ;


{( \sqrt{ {x}^( - 3) } )}^(5) = {( \sqrt{ \frac{1}{ {x}^(3) }} })^(5) = ( { \frac{ √(1) }{ \sqrt{ {x}^(3) } } })^(5) \\ \\ = ( { \frac{1}{ √(x) \sqrt{ {x}^(2) } } })^(5) = ({ (1)/( x√(x) )})^(5) \\ \\ = ( \frac{ {(1)}^(5) }{ {x}^(5) ( √(x) )^(5) } ) = \frac{1}{ {x}^(5) * {x}^{ (1)/(2) * 5 } } \\ \\ = \frac{1}{ {x}^(5) * {x}^{ (5)/(2) } } = \frac{1}{ {x}^(5) \sqrt{ {x}^(5) } } \\ \\ = \frac{1}{ {x}^(5) \sqrt{ {x}^(4) {x}^(1) } } = \frac{1}{ {x}^(5) √(x) \sqrt{( { {x}^(2) })^(2) } } \\ \\ = \frac{1}{ {x}^(5) {x}^(2) √(x) } = \frac{1}{ {x}^(7) √(x) } = \frac{ √(x) }{ {x}^(8) }

User Azu
by
3.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.