Answer:
B: 30°, 78°, 72
Explanation:
Given a
.
Let
![\angle A = x^\circ](https://img.qammunity.org/2021/formulas/mathematics/high-school/7i1onhykx1pqdpylws8xkvqq2rnccm10it.png)
As per question statement,
is 18° more than twice of
.
i.e
![\angle B =(2x+18)^\circ](https://img.qammunity.org/2021/formulas/mathematics/high-school/zagqi8rrnlcozfyt0xxfvdwg3j61v6yvmy.png)
is 42° more than that of
![\angle A](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ro5v4ulqwms62zgk8kilypt6ikigafld2k.png)
![\angle C = (x+42)^\circ](https://img.qammunity.org/2021/formulas/mathematics/high-school/ve26tyjqv54lbxhq77fdag080etpakmin2.png)
To find:
The angle measures of the triangle = ?
Solution:
We can use the angle sum property of a triangle here to find the three angles of the triangle.
As per angle sum property, the sum of all the three internal angles is equal to
.
![\angle A + \angle B + \angle C= 180^\circ\\\Rightarrow x+2x+18+x+42=180^\circ\\\Rightarrow 4x+60=180\\\Rightarrow 4x=120\\\Rightarrow x= 30^\circ](https://img.qammunity.org/2021/formulas/mathematics/high-school/4wbohrjhlv42wivn436nytksyxj3w10ims.png)
i.e.
![\angle A = 30^\circ](https://img.qammunity.org/2021/formulas/mathematics/high-school/2czmc2tzzku4v7idehxirr536mpzr0pl1j.png)
![\angle B = 2* 30 + 18 = 78^\circ](https://img.qammunity.org/2021/formulas/mathematics/high-school/fvvzb5xojub20cf4as9fghrxjdpj3hiwcq.png)
![\angle C = 30+42 = 72^\circ](https://img.qammunity.org/2021/formulas/mathematics/high-school/grwrzaxi8q20s4f0fmhgdox4tvv9ugeo22.png)
Therefore, the correct answer is:
B: 30°, 78°, 72