15.0k views
4 votes
Find d²y/dx² in terms of x and y.
y^5 = x^7
d²y/dx² =????​

Find d²y/dx² in terms of x and y. y^5 = x^7 d²y/dx² =????​-example-1
User Thelr
by
7.8k points

1 Answer

2 votes

Answer:
(14y)/(25x^2)

====================================================

Work Shown:

First calculate
(dy)/(dx) through the use of implicit differentiation.

Don't forget about the chain rule.


y^5 = x^7\\\\(d)/(dx)\left[y^5\right] = (d)/(dx)\left[x^7\right]\\\\5y^4(dy)/(dx) = 7x^6\\\\(dy)/(dx) = (7x^6)/(5y^4)\\\\

Go back to line 3, shown above, and apply the derivative to both sides.

You'll be using the product rule.


5y^4(dy)/(dx) = 7x^6\\\\(d)/(dx)\left[5y^4(dy)/(dx)\right] = (d)/(dx)\left[7x^6\right]\\\\(d)/(dx)\left[5y^4\right]*(dy)/(dx)+5y^4*(d)/(dx)\left[(dy)/(dx)\right] = 42x^5\\\\20y^3*(dy)/(dx)*(dy)/(dx)+5y^4*(d^2y)/(dx^2)=42x^5\\\\20y^3*\left((dy)/(dx)\right)^2+5y^4*(d^2y)/(dx^2) = 42x^5\\\\

Use substitution and isolate
(d^2y)/(dx^2) to get the following:


20y^3*\left((dy)/(dx)\right)^2+5y^4*(d^2y)/(dx^2) = 42x^5\\\\20y^3*\left((7x^6)/(5y^4)\right)^2+5y^4*(d^2y)/(dx^2) = 42x^5\\\\(196x^(12))/(5y^5)+5y^4*(d^2y)/(dx^2) = 42x^5\\\\(196x^(12))/(5x^7)+5y^4(d^2y)/(dx^2) = 42x^5\\\\


(196x^5)/(5)+5y^4*(d^2y)/(dx^2)=42x^5\\\\5y^4*(d^2y)/(dx^2)=42x^5-(196x^5)/(5)\\\\5y^4*(d^2y)/(dx^2)=(210x^5-196x^5)/(5)\\\\5y^4*(d^2y)/(dx^2)=(14x^5)/(5)\\\\


(d^2y)/(dx^2)=(14x^5)/(5)*(1)/(5y^4)\\\\(d^2y)/(dx^2)=(14x^5)/(25y^4)\\\\(d^2y)/(dx^2)=(14x^5*x^2)/(25y^4*x^2)\\\\(d^2y)/(dx^2)=(14x^7)/(25y^4*x^2)\\\\(d^2y)/(dx^2)=(14y^5)/(25y^4*x^2)\\\\(d^2y)/(dx^2)=(14y)/(25x^2)\\\\

User Carleson
by
8.3k points