Answer:

====================================================
Work Shown:
First calculate
through the use of implicit differentiation.
Don't forget about the chain rule.
![y^5 = x^7\\\\(d)/(dx)\left[y^5\right] = (d)/(dx)\left[x^7\right]\\\\5y^4(dy)/(dx) = 7x^6\\\\(dy)/(dx) = (7x^6)/(5y^4)\\\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/dk72tzs80vswvx7ucy6d9cghqdsbha6g5t.png)
Go back to line 3, shown above, and apply the derivative to both sides.
You'll be using the product rule.
![5y^4(dy)/(dx) = 7x^6\\\\(d)/(dx)\left[5y^4(dy)/(dx)\right] = (d)/(dx)\left[7x^6\right]\\\\(d)/(dx)\left[5y^4\right]*(dy)/(dx)+5y^4*(d)/(dx)\left[(dy)/(dx)\right] = 42x^5\\\\20y^3*(dy)/(dx)*(dy)/(dx)+5y^4*(d^2y)/(dx^2)=42x^5\\\\20y^3*\left((dy)/(dx)\right)^2+5y^4*(d^2y)/(dx^2) = 42x^5\\\\](https://img.qammunity.org/2021/formulas/mathematics/high-school/4asgxy6zna1690zo24w9yvlbdkel8ghtap.png)
Use substitution and isolate
to get the following:


