Given:
LCM(a,b) = 90 and GCD(a,b) = 3.
b is three more than a.
To find:
The values of a and b.
Solution:
We have,
LCM(a,b) = 90
GCD(a,b) = HCF(a,b) = 3
According to the question,
![b=a+3](https://img.qammunity.org/2021/formulas/mathematics/college/3mhxh065193k1ji7lwoa8wcpb8llvmg5ya.png)
If a and b are two positive integers, then
![a* b=HCF(a,b)* LCM(a,b)](https://img.qammunity.org/2021/formulas/mathematics/college/lxjbe808glumbpljcnk9xm7x11qhx46qum.png)
![a* (a+3)=3* 90](https://img.qammunity.org/2021/formulas/mathematics/college/cglnmtqex1u0danu2ojxh93wiz3jkuhnbh.png)
![a^2+3a=270](https://img.qammunity.org/2021/formulas/mathematics/college/bp864jm2swo942b7d6y94wjg1idhu6yvys.png)
![a^2+3a-270=0](https://img.qammunity.org/2021/formulas/mathematics/college/urdeuc96flcs2bj14ivond8otlcnkwrg7r.png)
Splitting the middle terms, we get
![a^2+18a-15a-270=0](https://img.qammunity.org/2021/formulas/mathematics/college/w9uujcuh52tiwe27un6igdf4h1jlrbcsp9.png)
![a(a+18)-15(a+18)=0](https://img.qammunity.org/2021/formulas/mathematics/college/eoec04858y80lv19ryulxwvj6sw9cyahqb.png)
![(a+18)(a-15)=0](https://img.qammunity.org/2021/formulas/mathematics/college/uo9nhrqkzrcpxnn1vw916vm1t6twrwifak.png)
Using zero product property, we get
and
![a-15=0](https://img.qammunity.org/2021/formulas/mathematics/college/flzucv6zblcg7hw1govq7jcdsna94t9498.png)
and
![a=15](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6v5pfb3ha63be7ybgzwajfhhyfcjvokw5m.png)
a is a positive integer so it cannot be negative. So, a=15.
Now,
![b=a+3](https://img.qammunity.org/2021/formulas/mathematics/college/3mhxh065193k1ji7lwoa8wcpb8llvmg5ya.png)
![b=15+3](https://img.qammunity.org/2021/formulas/mathematics/college/v4uw6tp9g53q7y2jygksglzjx96was3yyo.png)
![b=18](https://img.qammunity.org/2021/formulas/mathematics/college/40iqbf2vcjhgaikw240y7kcgie83ny80ja.png)
Therefore, the value of a is 15 and the value of b is 18.