Answer:
![\left|2x-6\right|<4\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:1<x<5\:\\ \:\mathrm{Interval\:Notation:}&\:\left(1,\:5\right)\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/high-school/4cg502pebzb6rm9vgpjkxu5yuj090un69b.png)
Therefore, the 3rd graph represents the solutions to inequality.
Please also check the graph below.
Explanation:
Given the expression
![|2x\:-\:6|\:<\:4](https://img.qammunity.org/2021/formulas/mathematics/high-school/igyelat6sxnmktb6n1ekxeg2u694ziw1dy.png)
![\mathrm{Apply\:absolute\:rule}:\quad \mathrm{If}\:|u|\:<\:a,\:a>0\:\mathrm{then}\:-a\:<\:u\:<\:a](https://img.qammunity.org/2021/formulas/mathematics/high-school/tggx7fiwfg5k0xciaz7404c40edvgpp9s9.png)
![-4<2x-6<4](https://img.qammunity.org/2021/formulas/mathematics/high-school/1nnnfi7irpw9b54t3qh5nrmovv6yuecjly.png)
![2x-6>-4\quad \mathrm{and}\quad \:2x-6<4](https://img.qammunity.org/2021/formulas/mathematics/high-school/uas8wk0ilc2itmd8l6tvo4h12cu4j7tosf.png)
condition 1
![2x-6>-4](https://img.qammunity.org/2021/formulas/mathematics/high-school/zgssd3krou3t8qjw56va7g1ohh3ttwouop.png)
Add 6 to both sides
![2x-6+6>-4+6](https://img.qammunity.org/2021/formulas/mathematics/high-school/3qs7u23q4s8rfm1arav8rw796z9y5xmg4e.png)
![2x>2](https://img.qammunity.org/2021/formulas/mathematics/high-school/4hcyselrf2tb82wgfxt16jm43h3ow8931b.png)
Divide both sides by 2
![(2x)/(2)>(2)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/pd4jzvfjklj82mo7k983thvbssqhxjztja.png)
![x>1](https://img.qammunity.org/2021/formulas/mathematics/middle-school/xr4p1j9qa4ffhp9hzv8ch453oefvp66e98.png)
condition 2
![2x-6<4](https://img.qammunity.org/2021/formulas/mathematics/high-school/mg3k3f9sayc1pjnbyvju7zyren87ogrdho.png)
Add 6 to both sides
![2x-6+6<4+6](https://img.qammunity.org/2021/formulas/mathematics/high-school/ze7ebt7p7eyp0zjzpl2muvgqa58f5lefc4.png)
![2x<10](https://img.qammunity.org/2021/formulas/mathematics/high-school/ar5gjhjzm8hv9kbuyo8qsf8xkfyilbuzwa.png)
Divide both sides by 2
![(2x)/(2)<(10)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/iig2129wp0af7su3az9f0ie5qvwusntglu.png)
![x<5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/x03p6kouv4z54rdbiq9fokuewpsebnfkfb.png)
combine the intervals
![x>1\quad \mathrm{and}\quad \:x<5](https://img.qammunity.org/2021/formulas/mathematics/high-school/epd950kiyxsipyb2utd0jp235yel8verat.png)
Merging overlapping intervals
![1<x<5](https://img.qammunity.org/2021/formulas/mathematics/high-school/3dlz9rovbiiz31r9zu2cd7a6dpyctq7c1r.png)
Thus,
![\left|2x-6\right|<4\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&\:1<x<5\:\\ \:\mathrm{Interval\:Notation:}&\:\left(1,\:5\right)\end{bmatrix}](https://img.qammunity.org/2021/formulas/mathematics/high-school/4cg502pebzb6rm9vgpjkxu5yuj090un69b.png)
Therefore, the 3rd graph represents the solutions to inequality.
Please also check the graph below.