7.4k views
2 votes
Which graph represents the solutions to the inequality |2x - 6 < 4? (5 points)

-9-8-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
-9-8-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
9
-9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9
-9-8-7 -6 -5 -4 -3 -2 -1
0 1 2 3 4 5 6 7 8 9

Which graph represents the solutions to the inequality |2x - 6 < 4? (5 points) -9-8-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 -9-8-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 -9-8-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9-example-1

1 Answer

4 votes

Answer:


\left|2x-6\right|<4\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:1<x<5\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(1,\:5\right)\end{bmatrix}

Therefore, the 3rd graph represents the solutions to inequality.

Please also check the graph below.

Explanation:

Given the expression


|2x\:-\:6|\:<\:4


\mathrm{Apply\:absolute\:rule}:\quad \mathrm{If}\:|u|\:<\:a,\:a>0\:\mathrm{then}\:-a\:<\:u\:<\:a


-4<2x-6<4


2x-6>-4\quad \mathrm{and}\quad \:2x-6<4

condition 1


2x-6>-4

Add 6 to both sides


2x-6+6>-4+6


2x>2

Divide both sides by 2


(2x)/(2)>(2)/(2)


x>1

condition 2


2x-6<4

Add 6 to both sides


2x-6+6<4+6


2x<10

Divide both sides by 2


(2x)/(2)<(10)/(2)


x<5

combine the intervals


x>1\quad \mathrm{and}\quad \:x<5

Merging overlapping intervals


1<x<5

Thus,


\left|2x-6\right|<4\quad :\quad \begin{bmatrix}\mathrm{Solution:}\:&amp;\:1<x<5\:\\ \:\mathrm{Interval\:Notation:}&amp;\:\left(1,\:5\right)\end{bmatrix}

Therefore, the 3rd graph represents the solutions to inequality.

Please also check the graph below.

Which graph represents the solutions to the inequality |2x - 6 < 4? (5 points) -9-8-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 -9-8-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 -9-8-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9-example-1
User StupidWolf
by
5.8k points