17.1k views
4 votes
Select the correct answer​

Select the correct answer​-example-1
User Hydra
by
3.7k points

1 Answer

4 votes

Answer:

a) We get
\mathbf{A+B=x^2-2x+1}

So, Is the result of A+B is a polynomial:Yes

b) We get
\mathbf{A-B=6x^3-7x^2+2x-1}

So, Is the result of A-B is a polynomial:Yes

c) We get
\mathbf{A.B=9x^6+21x^5-18x^4+9x^3-3x^2}

So, Is the result of A.B is a polynomial:Yes

Explanation:

We are giving the polynomial equations:


A= 3x^2(x-1)\\B=-3x^3+4x^2-2x+1

We need to find

a) A+B


A+B=3x^2(x-1)+(-3x^3+4x^2-2x+1)\\A+B=3x^3-3x^2-3x^3+4x^2-2x+1\\A+B=3x^3-3x^3-3x^2+4x^2-2x+1\\A+B=x^2-2x+1\\

So, we get
\mathbf{A+B=x^2-2x+1}

So, Is the result of A+B is a polynomial:Yes

b) A-B


A-B=3x^2(x-1)-(-3x^3+4x^2-2x+1)\\A-B=3x^3-3x^2+3x^3-4x^2+2x-1\\A-B=3x^3+3x^3-3x^2-4x^2+2x-1\\A-B=6x^3-7x^2+2x-1\\

So, we get
\mathbf{A-B=6x^3-7x^2+2x-1}

So, Is the result of A-B is a polynomial:Yes

c) A . B


A.B=3x^3(-3x^3+4x^2-2x+1)-3x^2(-3x^3+4x^2-2x+1)\\A.B=9x^6+12x^5-6x^4+3x^3+9x^5-12x^4+6x^3-3x^2\\A.B=9x^6+12x^5+9x^5-6x^4-12x^4+3x^3+6x^3-3x^2\\A.B=9x^6+21x^5-18x^4+9x^3-3x^2

So, we get
\mathbf{A.B=9x^6+21x^5-18x^4+9x^3-3x^2}

So, Is the result of A.B is a polynomial:Yes

User Sander Van Keer
by
3.8k points