17.1k views
4 votes
Select the correct answer​

Select the correct answer​-example-1
User Hydra
by
7.5k points

1 Answer

4 votes

Answer:

a) We get
\mathbf{A+B=x^2-2x+1}

So, Is the result of A+B is a polynomial:Yes

b) We get
\mathbf{A-B=6x^3-7x^2+2x-1}

So, Is the result of A-B is a polynomial:Yes

c) We get
\mathbf{A.B=9x^6+21x^5-18x^4+9x^3-3x^2}

So, Is the result of A.B is a polynomial:Yes

Explanation:

We are giving the polynomial equations:


A= 3x^2(x-1)\\B=-3x^3+4x^2-2x+1

We need to find

a) A+B


A+B=3x^2(x-1)+(-3x^3+4x^2-2x+1)\\A+B=3x^3-3x^2-3x^3+4x^2-2x+1\\A+B=3x^3-3x^3-3x^2+4x^2-2x+1\\A+B=x^2-2x+1\\

So, we get
\mathbf{A+B=x^2-2x+1}

So, Is the result of A+B is a polynomial:Yes

b) A-B


A-B=3x^2(x-1)-(-3x^3+4x^2-2x+1)\\A-B=3x^3-3x^2+3x^3-4x^2+2x-1\\A-B=3x^3+3x^3-3x^2-4x^2+2x-1\\A-B=6x^3-7x^2+2x-1\\

So, we get
\mathbf{A-B=6x^3-7x^2+2x-1}

So, Is the result of A-B is a polynomial:Yes

c) A . B


A.B=3x^3(-3x^3+4x^2-2x+1)-3x^2(-3x^3+4x^2-2x+1)\\A.B=9x^6+12x^5-6x^4+3x^3+9x^5-12x^4+6x^3-3x^2\\A.B=9x^6+12x^5+9x^5-6x^4-12x^4+3x^3+6x^3-3x^2\\A.B=9x^6+21x^5-18x^4+9x^3-3x^2

So, we get
\mathbf{A.B=9x^6+21x^5-18x^4+9x^3-3x^2}

So, Is the result of A.B is a polynomial:Yes

User Sander Van Keer
by
7.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories