Answer:
-- Modulus
--- Argument
Explanation:
Given
![((\sqrt 3)(cos(\pi)/(18) + i\ sin(\pi)/(18)))^6](https://img.qammunity.org/2021/formulas/mathematics/college/lf95xtscuqry3a4s7npoeu8hqbopxgocp0.png)
Required
Determine the modulus and the argument
We have that:
![z = ((\sqrt 3)(cos(\pi)/(18) + i\ sin(\pi)/(18)))^6](https://img.qammunity.org/2021/formulas/mathematics/college/76h4tr581fr584n0ccfyt2ihc7bwlujobj.png)
Expand:
![z = (\sqrt 3)^6(cos(\pi)/(18) + i\ sin(\pi)/(18))^6](https://img.qammunity.org/2021/formulas/mathematics/college/qgoa4lg2pw7k7c6qb2gto6te9g5ogjao62.png)
![z = 27(cos(\pi)/(18) + i\ sin(\pi)/(18))^6](https://img.qammunity.org/2021/formulas/mathematics/college/cgokx1dqz99qz0em3pzsvbpg2ze9qhdacz.png)
A complex equation can be expressed as:
![z = |z| e^(i\theta)](https://img.qammunity.org/2021/formulas/mathematics/college/wxojxktroxosblbr6zrun1djrv58fxxsqi.png)
Where
![|z| = modulus](https://img.qammunity.org/2021/formulas/mathematics/college/eof9ymz2wlv4h9yc4tn20viztok3xz804k.png)
![\theta = argument](https://img.qammunity.org/2021/formulas/mathematics/college/kaww4n8f9nhn5ms24dx85s6407uwb778v7.png)
Where
![e^(i\theta) = (cos(\pi)/(18) + i\ sin(\pi)/(18))](https://img.qammunity.org/2021/formulas/mathematics/college/7fhz4ir5ungma95ltgk286bxs55djkm9lp.png)
So:
becomes
![z = 27(e^{i(\pi)/(18)})^6](https://img.qammunity.org/2021/formulas/mathematics/college/ug0p08wc2gc0kverq6x7jh4a68fw06pb6z.png)
By comparison:
![e^(i\theta) = (e^{i(\pi)/(18)})^6](https://img.qammunity.org/2021/formulas/mathematics/college/c6l6m21po3xebnypctspel28u9qv7cr4u5.png)
This gives:
![{i\theta} = i(\pi)/(18)}*6](https://img.qammunity.org/2021/formulas/mathematics/college/yfug7jthkj5sh6ve1eracdh3lgzwnag37s.png)
![{i\theta} = i(6\pi)/(18)}](https://img.qammunity.org/2021/formulas/mathematics/college/dqufr8krdtxfmck29wuhhsbzqmlf8ul457.png)
![{i\theta} = i(\pi)/(3)}](https://img.qammunity.org/2021/formulas/mathematics/college/ru0v876ytyyeef1xq9nnh6gsaxbk0gz419.png)
Divide through by i
![\theta = (\pi)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/rjuo0n9b17th588furb000btot2od7sylc.png)
Hence, the modulus, z is:
![|z| = 27](https://img.qammunity.org/2021/formulas/mathematics/college/hhxcgvdodrtri48chyw9gxoc175jlvh27z.png)
And the argument
is
![\theta = (\pi)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/rjuo0n9b17th588furb000btot2od7sylc.png)