87.7k views
2 votes
Find the zeros of the function: to the nearest hundredth

Find the zeros of the function: to the nearest hundredth-example-1

1 Answer

7 votes

Answer:

The zeros of the function:


x=5.53 ,
x=3.22

Explanation:

Given the function


f\left(x\right)=2x^2-17.5x+35.6

To find zeros, put f(x)=0


0=2x^2-17.5x+35.6


\mathrm{Multiply\:both\:sides\:by\:}10


0\cdot \:10=2x^2\cdot \:10-17.5x\cdot \:10+35.6\cdot \:10


0=20x^2-175x+356

switch sides


20x^2-175x+356=0

subtract 356 from both sides


20x^2-175x+356-356=0-356


20x^2-175x=-356

divide both sides by 20


(20x^2-175x)/(20)=(-356)/(20)


x^2-(35x)/(4)=-(89)/(5)


\mathrm{Add\:}a^2=\left(-(35)/(8)\right)^2\mathrm{\:to\:both\:sides}


x^2-(35x)/(4)+\left(-(35)/(8)\right)^2=-(89)/(5)+\left(-(35)/(8)\right)^2

applying perfect square


\left(x-(35)/(8)\right)^2=(429)/(320)


\mathrm{For\:}f^2\left(x\right)=a\mathrm{\:the\:solutions\:are\:}f\left(x\right)=√(a),\:-√(a)

solving


x-(35)/(8)=\sqrt{(429)/(320)}


x=(√(2145))/(40)+(35)/(8)


x=5.53

also solving


x-(35)/(8)=-\sqrt{(429)/(320)}


x=-(√(2145))/(40)+(35)/(8)


x=3.22


\mathrm{The\:solutions\:to\:the\:quadratic\:equation\:are:}


x=5.53 ,
x=3.22

Therefore, the zeros of the function:


x=5.53 ,
x=3.22

User Peterstone
by
4.6k points