Answer:
Please check the explanation.
Explanation:
Let us consider
![y = f(x)](https://img.qammunity.org/2021/formulas/mathematics/college/vp1xbf56799rc0ytac4hzvzl0gz8ze4tmz.png)
To find the area under the curve
between
and
, all we need is to integrate
between the limits of
and
.
For example, the area between the curve y = x² - 4 and the x-axis on an interval [2, -2] can be calculated as:
![A=\int _a^b|f\left(x\right)|dx](https://img.qammunity.org/2021/formulas/mathematics/college/b8ohn3wtnm0o4i6i92fhrl05c0v0aex8e0.png)
=
![\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx](https://img.qammunity.org/2021/formulas/mathematics/college/cwlhr1w44uc6z4g3do4nxuchvf383sdpq3.png)
![=\int _(-2)^2x^2dx-\int _(-2)^24dx](https://img.qammunity.org/2021/formulas/mathematics/college/wkrq3ls3dd7utrx5o3at3j9tbc3km3v476.png)
solving
![\int _(-2)^2x^2dx](https://img.qammunity.org/2021/formulas/mathematics/college/z0fwqnhivzx9oc7dvkez5gidcdxv3812ea.png)
![\mathrm{Apply\:the\:Power\:Rule}:\quad \int x^adx=(x^(a+1))/(a+1),\:\quad \:a\\e -1](https://img.qammunity.org/2021/formulas/mathematics/college/r1o1rtdufie4gxzz8h4m5spk1xokeoo2jp.png)
![=\left[(x^(2+1))/(2+1)\right]^2_(-2)](https://img.qammunity.org/2021/formulas/mathematics/college/a2q4qon78beci2a7wj34puioi4w5voi83g.png)
![=\left[(x^3)/(3)\right]^2_(-2)](https://img.qammunity.org/2021/formulas/mathematics/college/pl2iaeoefijkpzrqzbgoaqruis2atc7jwo.png)
computing the boundaries
![=(16)/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/f0m1dwxr2ngyigp5wrpahtkpd034bmzo4m.png)
Thus,
![\int _(-2)^2x^2dx=(16)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/744kz5fxj8f746dtm29w8wbj8ncxoskk9y.png)
similarly solving
![\int _(-2)^24dx](https://img.qammunity.org/2021/formulas/mathematics/college/ot35qyi9813fplcxfz3wzqu88zs2ef31p8.png)
![\mathrm{Integral\:of\:a\:constant}:\quad \int adx=ax](https://img.qammunity.org/2021/formulas/mathematics/college/hphiasat7zbvslpiao0c43q3hnja26ht8a.png)
![=\left[4x\right]^2_(-2)](https://img.qammunity.org/2021/formulas/mathematics/college/8rhahbshjp1k1ff36u58yzp1rizzj9o3b3.png)
computing the boundaries
![=16](https://img.qammunity.org/2021/formulas/mathematics/high-school/2tjfhlu8wy833y812ympty0iw2w422nn0x.png)
Thus,
![\int _(-2)^24dx=16](https://img.qammunity.org/2021/formulas/mathematics/college/5ll8hov5hwtu4p3rsj8xjpe1tr2jzvjicd.png)
Therefore, the expression becomes
![A=\int _a^b|f\left(x\right)|dx=\int _(-2)^2x^2dx-\int _(-2)^24dx](https://img.qammunity.org/2021/formulas/mathematics/college/xbyhxsw2t2xphbsgke69xj9lqyy0346ysw.png)
![=(16)/(3)-16](https://img.qammunity.org/2021/formulas/mathematics/college/73su18e587y74ae8q8zfz9mil1f4khjcdm.png)
![=-(32)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/7c2tp8jmokkpxzp0ltyggckrtjtou7pov7.png)
square units
Thus, the area under a curve is -10.67 square units
The area is negative because it is below the x-axis. Please check the attached figure.