214k views
5 votes
What is the exact value of tan(195°)?

User Swabygw
by
4.3k points

2 Answers

4 votes

Answer:

It's C

Explanation:

User Guillermo Prandi
by
5.1k points
5 votes

Given:

The value is tan(195°).

To find:

The exact value of tan(195°).

Solution:

We have,


\tan (195^\circ)=\tan (180^\circ+15^\circ)


\tan (195^\circ)=\tan (15^\circ)
[\because \tan (180^\circ-\theta)=\tan \theta]

It can be written as


\tan (195^\circ)=\tan (45^\circ-30^\circ)


\tan (195^\circ)=(\tan (45^\circ)-\tan (30^\circ))/(1+\tan (45^\circ)\tan (30^\circ))
[\because \tan (A-B)=(\tan A-\tan B)/(1+\tan A\tan B)]


\tan (195^\circ)=(1-(1)/(√(3)))/(1+(1)((1)/(√(3))))


\tan (195^\circ)=((√(3)-1)/(√(3)))/(1+(1)/(√(3)))


\tan (195^\circ)=((√(3)-1)/(√(3)))/((√(3)+1)/(√(3)))


\tan (195^\circ)=(√(3)-1)/(√(3)+1)

Therefore, the exact value of tan(195°) is
(√(3)-1)/(√(3)+1).

User Txwikinger
by
5.4k points