Answer: .2496
Aops Question
Explanation:
This problem becomes easier if we write $\dfrac{1}{5}$ as $\dfrac{2}{10}$, so that all the denominators in our sum are powers of 10. Then
\begin{align*}
\frac15 + \left(\frac15\right)^2 + \left(\frac15\right)^3 + \left(\frac15\right)^4
&= \frac2{10} + \left(\frac2{10}\right)^2 + \left(\frac2{10}\right)^3 + \left(\frac2{10}\right)^4 \\
&= \frac2{10} + \frac4{100} + \frac8{1000} + \frac{16}{10{,}000} \\
&= 0.2 + 0.04 + 0.008 + 0.0016 \\
&= \boxed{0.2496}.
\end{align*}