Answer:
NOT a single ordered pair satisfies the equation.
Explanation:
Given the equation
![x^2+y^2=100](https://img.qammunity.org/2021/formulas/mathematics/high-school/d48su4vicpwxmhu5iqhg2g5o5782rozcey.png)
Let us substitute all the given ordered pairs to find which ordered pair satisfies the equation.
For (0, -100)
![x^2+y^2=100](https://img.qammunity.org/2021/formulas/mathematics/high-school/d48su4vicpwxmhu5iqhg2g5o5782rozcey.png)
substitute x=0 and y=-100
![0^2+\left(-100\right)^2=100](https://img.qammunity.org/2021/formulas/mathematics/high-school/pzw67rd6jv7r6a922tli6ts1qq2cif5u7d.png)
![10000=100](https://img.qammunity.org/2021/formulas/mathematics/high-school/b2axum97ku10rle9i46mvwgixj5e73uo4f.png)
FALSE
Thus, the ordered pair (0, -100) does NOT satisfy the equation.
For (10, -10)
![x^2+y^2=100](https://img.qammunity.org/2021/formulas/mathematics/high-school/d48su4vicpwxmhu5iqhg2g5o5782rozcey.png)
substitute x=10 and y=-10
![10^2+\left(-10\right)^2=100](https://img.qammunity.org/2021/formulas/mathematics/high-school/1i1noc720a1fnquyk01tvltxfom7m1odvb.png)
![200=100](https://img.qammunity.org/2021/formulas/mathematics/high-school/ud2qves27hubw4ybl2xc1ubf5987la8i5s.png)
FALSE
Thus, the ordered pair (10, -10) does NOT satisfy the equation.
For (25, 75)
![x^2+y^2=100](https://img.qammunity.org/2021/formulas/mathematics/high-school/d48su4vicpwxmhu5iqhg2g5o5782rozcey.png)
substitute x=25 and y=75
![25^2+\left(75\right)^2=100](https://img.qammunity.org/2021/formulas/mathematics/high-school/uh8iiqahljpipjzcfz932j1t0d5gv6uf4p.png)
![6250=100](https://img.qammunity.org/2021/formulas/mathematics/high-school/h2olub8fpg4yc8dksjy4e19fz0aa5blb7d.png)
FALSE
Thus, the ordered pair (25, 75) does NOT satisfy the equation.
Therefore, NOT a single ordered pair satisfies the equation.