Answer:
1) Combine the x tiles to get:
![\mathbf{4x}](https://img.qammunity.org/2021/formulas/mathematics/college/x7j2vekx8ue96o0lpvq6iih2htgaohvzj8.png)
2) Combine integer tiles to get: 3
3) The equivalent function is:
![\mathbf{4x+3}](https://img.qammunity.org/2021/formulas/mathematics/college/rr7x98axlhwun7caglnj2lomfucpp41fux.png)
4) If we Substitute any value of x both expressions will be equivalent
Explanation:
We are given expression:
![x+x+x+x++4-1\\](https://img.qammunity.org/2021/formulas/mathematics/college/42symzua7jd3apjep0dkpxcn2piz8arycp.png)
We need to complete following statements.
1) Combine the x tiles to get:
![x+x+x+x\\=4x](https://img.qammunity.org/2021/formulas/mathematics/college/p5pp8kjwo61wlvdu1qffoe4jb8pb8o8pyt.png)
Combine the x tiles to get:
![\mathbf{4x}](https://img.qammunity.org/2021/formulas/mathematics/college/x7j2vekx8ue96o0lpvq6iih2htgaohvzj8.png)
2) Combine integer tiles to get:
![+4-1\\=3](https://img.qammunity.org/2021/formulas/mathematics/college/vd1s6fu0k2jdc655fn3rsnfx2crgj1ssfu.png)
Combine integer tiles to get: 3
3) The equivalent function is:
![x+x+x+x++4-1\\\\4x+3](https://img.qammunity.org/2021/formulas/mathematics/college/lgoa3m82e3abgxsk17ct2bcnxb37vdlp92.png)
The equivalent function is:
![\mathbf{4x+3}](https://img.qammunity.org/2021/formulas/mathematics/college/rr7x98axlhwun7caglnj2lomfucpp41fux.png)
4) If we Substitute any value of x both expressions will be equivalent
Verifying:
![x+x+x+x+4-1=4x+3\\Let\: x = 1\\1+1+1+1+4-1=4(1)+3\\4+4-1=4+3\\7=7](https://img.qammunity.org/2021/formulas/mathematics/college/z9s33o8y1yuu3k85kybv4vfvagilcervri.png)
So, Both expressions are equivalent.