Answer:
Magnitude:
, Direction (unitized):
![\vec u = (√(6))/(6)\,\hat{i} + (11√(6))/(12)\,\hat{j}+(5√(6))/(12)\,\hat{k}](https://img.qammunity.org/2021/formulas/physics/college/azb6tkorj4aworvcw5yz8qxlx9qbysxkyf.png)
Step-by-step explanation:
Let
. The magnitude of the vector is represented by the Pythagorean formula:
(1)
And the direction is represented by the direction cosines, measured in sexagesimal degrees, that is:
(2)
(3)
(4)
If we know that
,
and
, then the magnitude and directions of the vector are, respectively:
![\|\vec v\| = \sqrt{2^(2)+11^(2)+5^(2)}](https://img.qammunity.org/2021/formulas/physics/college/pgz44whia4ca3bqyjzq002cnyc4mhva23d.png)
![\|\vec v\| = 5√(6)](https://img.qammunity.org/2021/formulas/physics/college/8runcwjfnmgi0n6h7j0qjylius20utayv1.png)
The direction can be represented by the following unit vector:
(5)
![\vec u = \frac{2\,\hat{i}+11\,\hat{j}+5\,\hat{k}}{2√(6)}](https://img.qammunity.org/2021/formulas/physics/college/195k452det0dn861z2crgtyafh76z5ea6m.png)
![\vec u = (√(6))/(6)\,\hat{i} + (11√(6))/(12)\,\hat{j}+(5√(6))/(12)\,\hat{k}](https://img.qammunity.org/2021/formulas/physics/college/azb6tkorj4aworvcw5yz8qxlx9qbysxkyf.png)